Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Zero-DCE++ Inspired Object Detection in Less Illuminated Environment Using Improved YOLOv5

    Ananthakrishnan Balasundaram1,*, Anshuman Mohanty2, Ayesha Shaik1, Krishnadoss Pradeep2, Kedalu Poornachary Vijayakumar2, Muthu Subash Kavitha3

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 2751-2769, 2023, DOI:10.32604/cmc.2023.044374 - 26 December 2023

    Abstract Automated object detection has received the most attention over the years. Use cases ranging from autonomous driving applications to military surveillance systems, require robust detection of objects in different illumination conditions. State-of-the-art object detectors tend to fare well in object detection during daytime conditions. However, their performance is severely hampered in night light conditions due to poor illumination. To address this challenge, the manuscript proposes an improved YOLOv5-based object detection framework for effective detection in unevenly illuminated nighttime conditions. Firstly, the preprocessing strategies involve using the Zero-DCE++ approach to enhance lowlight images. It is followed… More >

  • Open Access

    ARTICLE

    A Lightweight Road Scene Semantic Segmentation Algorithm

    Jiansheng Peng1,2,*, Qing Yang1, Yaru Hou1

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1929-1948, 2023, DOI:10.32604/cmc.2023.043524 - 29 November 2023

    Abstract In recent years, with the continuous deepening of smart city construction, there have been significant changes and improvements in the field of intelligent transportation. The semantic segmentation of road scenes has important practical significance in the fields of automatic driving, transportation planning, and intelligent transportation systems. However, the current mainstream lightweight semantic segmentation models in road scene segmentation face problems such as poor segmentation performance of small targets and insufficient refinement of segmentation edges. Therefore, this article proposes a lightweight semantic segmentation model based on the LiteSeg model improvement to address these issues. The model… More >

  • Open Access

    ARTICLE

    MEB-YOLO: An Efficient Vehicle Detection Method in Complex Traffic Road Scenes

    Yingkun Song1, Shunhe Hong1, Chentao Hu1, Pingan He2, Lingbing Tao1, Zhixin Tie1,3,*, Chengfu Ding4

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5761-5784, 2023, DOI:10.32604/cmc.2023.038910 - 29 April 2023

    Abstract Rapid and precise vehicle recognition and classification are essential for intelligent transportation systems, and road target detection is one of the most difficult tasks in the field of computer vision. The challenge in real-time road target detection is the ability to properly pinpoint relatively small vehicles in complicated environments. However, because road targets are prone to complicated backgrounds and sparse features, it is challenging to detect and identify vehicle kinds fast and reliably. We suggest a new vehicle detection model called MEB-YOLO, which combines Mosaic and MixUp data augmentation, Efficient Channel Attention (ECA) attention mechanism,… More >

Displaying 1-10 on page 1 of 3. Per Page