Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (110)
  • Open Access

    ARTICLE

    Research on Damage Identification of Cable-Stayed Bridges Based on Modal Fingerprint Data Fusion

    Yue Cao1,2, Longsheng Bao1, Xiaowei Zhang1,*, Zhanfei Wang1, Bingqian Li1

    Structural Durability & Health Monitoring, Vol.18, No.4, pp. 485-503, 2024, DOI:10.32604/sdhm.2024.049698

    Abstract This study addresses the issue of inaccurate single damage fingerprint recognition during the process of bridge damage identification. To improve accuracy, the proposed approach involves fusing displacement mode difference and curvature mode difference data for single damage identification, and curvature mode difference and displacement mode wavelet coefficient difference data for two damage identification. The methodology begins by establishing a finite element model of the cable-stayed bridge and obtaining the original damage fingerprints, displacement modes, curvature modes, and wavelet coefficient differences of displacement modes through modal analysis. A fusion program based on the D-S evidence theory… More > Graphic Abstract

    Research on Damage Identification of Cable-Stayed Bridges Based on Modal Fingerprint Data Fusion

  • Open Access

    ARTICLE

    Field Load Test Based SHM System Safety Standard Determination for Rigid Frame Bridge

    Xilong Zheng*, Qiong Wang, Di Guan

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 361-376, 2024, DOI:10.32604/sdhm.2024.048473

    Abstract The deteriorated continuous rigid frame bridge is strengthened by external prestressing. Static loading tests were conducted before and after the bridge rehabilitation to verify the effectiveness of the rehabilitation process. The stiffness of the repaired bridge is improved, and the maximum deflection of the load test is reduced from 37.9 to 27.6 mm. A bridge health monitoring system is installed after the bridge is reinforced. To achieve an easy assessment of the bridge’s safety status by directly using transferred data, a real-time safety warning system is created based on a five-level safety standard. The threshold More >

  • Open Access

    ARTICLE

    Fatigue Crack Propagation Law of Corroded Steel Box Girders in Long Span Bridges

    Ying Wang1,*, Longxiao Chao1, Jun Chen2, Songbai Jiang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 201-227, 2024, DOI:10.32604/cmes.2024.046129

    Abstract In order to investigate the fatigue performance of orthotropic anisotropic steel bridge decks, this study realizes the simulation of the welding process through elastic-plastic finite element theory, thermal-structural sequential coupling, and the birth-death element method. The simulated welding residual stresses are introduced into the multiscale finite element model of the bridge as the initial stress. Furthermore, the study explores the impact of residual stress on crack propagation in the fatigue-vulnerable components of the corroded steel box girder. The results indicate that fatigue cracks at the weld toe of the top deck, the weld root of… More > Graphic Abstract

    Fatigue Crack Propagation Law of Corroded Steel Box Girders in Long Span Bridges

  • Open Access

    ARTICLE

    Numerical Analysis of Cold-Formed Thin-Walled Steel Short Columns with Pitting Corrosion during Bridge Construction

    Hongzhang Wang1, Jing Guo1, Shanjun Yang1, Chaoheng Cheng2, Jing Chen3,*, Zhihao Chen3

    Structural Durability & Health Monitoring, Vol.18, No.2, pp. 181-196, 2024, DOI:10.32604/sdhm.2024.044628

    Abstract Pitting corrosion is harmful during bridge construction, which will lead to uneven roughness of steel surfaces and reduce the thickness of steel. Hence, the effect of pitting corrosion on the mechanical properties of cold-formed thin-walled steel stub columns is studied, and the empirical formulas are established through regression fitting to predict the ultimate load of web and flange under pitting corrosion. In detail, the failure modes and load-displacement curves of specimens with different locations, area ratios, and depths are obtained through a large number of non-linear finite element analysis. As for the specimens with pitting… More > Graphic Abstract

    Numerical Analysis of Cold-Formed Thin-Walled Steel Short Columns with Pitting Corrosion during Bridge Construction

  • Open Access

    ARTICLE

    Dynamic Response Impact of Vehicle Braking on Simply Supported Beam Bridges with Corrugated Steel Webs Based on Vehicle-Bridge Coupled Vibration Analysis

    Yan Wang*, Siwen Li, Na Wei

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3467-3493, 2024, DOI:10.32604/cmes.2024.046454

    Abstract A novel approach for analyzing coupled vibrations between vehicles and bridges is presented, taking into account spatiotemporal effects and mechanical phenomena resulting from vehicle braking. Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method. The method’s validity and reliability are substantiated through numerical examples. A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed, braking acceleration, braking location, and road surface roughness on the mid-span displacement and impact factor of the bridge… More >

  • Open Access

    ARTICLE

    Quick Weighing of Passing Vehicles Using the Transfer-Learning-Enhanced Convolutional Neural Network

    Wangchen Yan1,*, Jinbao Yang1, Xin Luo2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2507-2524, 2024, DOI:10.32604/cmes.2023.044709

    Abstract Transfer learning could reduce the time and resources required by the training of new models and be therefore important for generalized applications of the trained machine learning algorithms. In this study, a transfer learning-enhanced convolutional neural network (CNN) was proposed to identify the gross weight and the axle weight of moving vehicles on the bridge. The proposed transfer learning-enhanced CNN model was expected to weigh different bridges based on a small amount of training datasets and provide high identification accuracy. First of all, a CNN algorithm for bridge weigh-in-motion (B-WIM) technology was proposed to identify… More >

  • Open Access

    ARTICLE

    An Improved JSO and Its Application in Spreader Optimization of Large Span Corridor Bridge

    Shude Fu1,2, Xinye Wu1,2,*, Wenjie Wang3, Yixin Hu1,3,*, Zhengke Li1, Feng Jiang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2357-2382, 2024, DOI:10.32604/cmes.2023.031118

    Abstract In this paper, given the shortcomings of jellyfish search algorithm with low search ability in the early stage and easy to fall into local optimal solution, this paper introduces adaptive weight function and elite strategy, improving the global search scope in the early stage and the ability to refine the local development in the later stage. In the numerical study, the benchmark problem of dimensional optimization with a 10-bar truss structure and simultaneous dimensional shape optimization with a 15-bar truss structure is adopted, and the corresponding penalty method is used for constraint treatment. The test… More > Graphic Abstract

    An Improved JSO and Its Application in Spreader Optimization of Large Span Corridor Bridge

  • Open Access

    ARTICLE

    An Analysis of the Dynamic Behavior of Damaged Reinforced Concrete Bridges under Moving Vehicle Loads by Using the Moving Mesh Technique

    Fabrizio Greco*, Paolo Lonetti, Arturo Pascuzzo, Giulia Sansone

    Structural Durability & Health Monitoring, Vol.17, No.6, pp. 457-483, 2023, DOI:10.32604/sdhm.2023.030075

    Abstract This work proposes a numerical investigation on the effects of damage on the structural response of Reinforced Concrete (RC) bridge structures commonly adopted in highway and railway networks. An effective three-dimensional FE-based numerical model is developed to analyze the bridge’s structural response under several damage scenarios, including the effects of moving vehicle loads. In particular, the longitudinal and transversal beams are modeled through solid finite elements, while horizontal slabs are made of shell elements. Damage phenomena are also incorporated in the numerical model according to a smeared approach consistent with Continuum Damage Mechanics (CDM). In… More >

  • Open Access

    PROCEEDINGS

    Mechanism of the Passive Tap-Scan Damage Detection Method

    Zhuyou Hu1, Ping Lin2,3, He Guo2,3, Yumei Zhang2,3, Zhihai Xiang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-2, 2023, DOI:10.32604/icces.2023.09475

    Abstract In recent years, the vehicle scanning method for bridge inspection has drawn much attention by researchers because of its simple operation and high efficiency [1]. Besides the natural frequency, modal modes and other information of bridges, damage can also be detected in this way [2]. For example, we proposed the passive tap-scan damage detection method [3], which scans the bridge with the tapping force generated by a toothed wheel, mimicking the hunting behavior of woodpeckers. In this talk, we will discuss two critical aspects related to the mechanism of this method. One is the quantitative… More >

  • Open Access

    PROCEEDINGS

    Mechanism of the Passive Tap-Scan Damage Detection Method

    Zhuyou Hu1, Ping Lin2,3, He Guo2,3, Yumei Zhang2,3, Zhihai Xiang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-2, 2023, DOI:10.32604/icces.2023.09475

    Abstract In recent years, the vehicle scanning method for bridge inspection has drawn much attention by researchers because of its simple operation and high efficiency [1]. Besides the natural frequency, modal modes and other information of bridges, damage can also be detected in this way [2]. For example, we proposed the passive tap-scan damage detection method [3], which scans the bridge with the tapping force generated by a toothed wheel, mimicking the hunting behavior of woodpeckers. In this talk, we will discuss two critical aspects related to the mechanism of this method. One is the quantitative… More >

Displaying 1-10 on page 1 of 110. Per Page