Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (144)
  • Open Access

    ARTICLE

    Plywood Bio-Adhesives by Oxidized Lignin Urea Bridged with Oxidized Starch

    Hamed Younesi-Kordkheili1,*, Antonio Pizzi2,*

    Journal of Renewable Materials, Vol.14, No.1, 2026, DOI:10.32604/jrm.2025.02025-0179 - 23 January 2026

    Abstract The aim of this research was to synthesize a new totally bio wood adhesive entailing the use of oxidized starch (OST), urea, and oxidized lignin (OL). For this reason, non-modified (L) and oxidized lignin (OL) at different contents (20%, 30%, and 40%) were used to prepare the starch-urea-lignin (SUL) and starch-urea-oxidized lignin (SUOL) resin. Sodium persulfate (SPS) as oxidizer was employed to oxidize both starch and lignin. Urea was just used as a low cost and effective crosslinker in the resin composition. The properties of the synthesized resins and the plywood panels bonded with them… More > Graphic Abstract

    Plywood Bio-Adhesives by Oxidized Lignin Urea Bridged with Oxidized Starch

  • Open Access

    ARTICLE

    Long-Term Bridge Health Evaluation Using Resonant Frequency Changes under Random Loading Conditions

    Thi Kim Chi Duong1, Bich-Ngoc. Mach2, Hoa-Cuc. Nguyen2, Thi Nhu Quynh Trinh2, Thanh Q. Nguyen3,4,*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.070185 - 08 January 2026

    Abstract This study explores theoretical insights and experimental results on monitoring load-carrying capacity degradation in bridge spans through frequency analysis. Experiments were conducted on real bridge structures, including the Binh Thuan Bridge, focusing on analyzing the power spectral density (PSD) of vibration signals under random traffic loads. Detailed digital models of various bridge spans with different structural designs and construction periods were developed to ensure diversity. The study utilized PSD to analyze the vibration signals from the bridge spans under various loading conditions, identifying the vibration frequencies and the corresponding response regions. The research correlated the… More >

  • Open Access

    ARTICLE

    Stress Redistribution Patterns in Road-Rail Double-Deck Bridges: Insights from Long-Term Bridge Health Monitoring

    Benyu Wang*, Ke Chen, Bingjian Wang#,*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.070137 - 08 January 2026

    Abstract To examine stress redistribution phenomena in bridges subjected to varying operational conditions, this study conducts a comprehensive analysis of three years of monitoring data from a 153-m double-deck road–rail steel arch bridge. An initial statistical comparison of sensor data distributions reveals clear temporal variations in stress redistribution patterns. XGBoost (eXtreme Gradient Boosting), a gradient-boosting machine learning (ML) algorithm, was employed not only for predictive modeling but also to uncover the underlying mechanisms of stress evolution. Unlike traditional numerical models that rely on extensive assumptions and idealizations, XGBoost effectively captures nonlinear and time-varying relationships between stress… More >

  • Open Access

    SHORT COMMUNICATION

    Seismic Optimization Method of Nuclear Power Crane Structure

    Zhengyan Chang, Weiwei Wang, Mingliang Yang, Heng Yang, Qing Dong, Keyuan Zhao, Jie Yuwen*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.066572 - 08 January 2026

    Abstract To address the neglect of seismic performance in conventional double-girder bridge crane optimization, this paper introduces a time-history analysis-based seismic optimization methodology for crane structures. Using a 25-t nuclear power crane as a case study, a bridge frame finite element model is established and validated through static analysis, confirming its accurate representation of the physical entity’s mechanical behavior. Furthermore, with bridge mass reduction as the objective and structural strength, stiffness, stability, and seismic mechanical performance as constraints, an optimization model is developed employing the Whale Optimization Algorithm (WOA). More >

  • Open Access

    ARTICLE

    Identification of Key Parameters for Temporary Guy Ropes in Sloping Central Tower Column and Brace Construction

    Renfei Chang1, Liqiang Jin1, Haihui Xie2,*, Kai Zhang3, Musheng Ye4

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.063718 - 08 January 2026

    Abstract To investigate the impact of temporary structures on the mechanical behavior of shaped bridge towers during the construction process, the Dianbu River Special Bridge was selected as the engineering background. A finite element model of the middle tower column during the construction stage was established using ABAQUS to analyze the effects of key parameters, including the angle and pretension of temporary cables, as well as the wall thickness and diameter of temporary diagonal braces. The study examines how these parameters influence the stresses at the tower-girder consolidation. The results indicate that the angle of temporary More >

  • Open Access

    ARTICLE

    Construction of MMC-CLCC Hybrid DC Transmission System and Its Power Flow Reversal Control Strategy

    Yechun Xin1, Xinyuan Zhao1, Dong Ding2, Shuyu Chen2, Chuanjie Wang2, Tuo Wang1,*

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069748 - 27 December 2025

    Abstract To enhance power flow regulation in scenarios involving large-scale renewable energy transmission via high-voltage direct current (HVDC) links and multi-infeed DC systems in load-center regions, this paper proposes a hybrid modular multilevel converter–capacitor-commutated line-commutated converter (MMC-CLCC) HVDC transmission system and its corresponding control strategy. First, the system topology is constructed, and a submodule configuration method for the MMC—combining full-bridge submodules (FBSMs) and half-bridge submodules (HBSMs)—is proposed to enable direct power flow reversal. Second, a hierarchical control strategy is introduced, including MMC voltage control, CLCC current control, and a coordination mechanism, along with the derivation of… More >

  • Open Access

    ARTICLE

    Power Balance Control Strategy of Cascaded H-Bridge Multilevel Inverter Based on Improved Harmonic Injection

    Feng Zhao, Haonan Xu*, Xiaoqiang Chen, Ying Wang

    Energy Engineering, Vol.122, No.12, pp. 4987-5000, 2025, DOI:10.32604/ee.2025.068714 - 27 November 2025

    Abstract The cascaded H-bridge (CHB) multilevel inverter has become one of the most widely used PV inverter topologies due to its high voltage processing capability and high quality output power. Grid-connected PV system due to external conditions such as PV panel shading, PV component damage, can lead to PV output power imbalance, triggering the system over-modulation phenomenon, which in turn leads to grid-connected current waveform distortion. To this end, an improved power balance control strategy is proposed in this paper. Firstly, according to the different modulation ratios of each H-bridge module, a suitable harmonic injection method More >

  • Open Access

    ARTICLE

    The Advanced Structural Health Monitoring by Non-Destructive Self-Powered Wireless Lightweight Sensor

    Wael A. Altabey*

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1529-1545, 2025, DOI:10.32604/sdhm.2025.069003 - 17 November 2025

    Abstract This paper aims to study a novel smart self-powered wireless lightweight (SPWL) bridge health monitoring sensor, which integrates key technologies such as large-scale, low-power wireless data transmission, environmental energy self-harvesting, and intelligent perception, and can operate stably for a long time in complex and changing environments. The self-powered system of the sensor can meet the needs of long-term bridge service performance monitoring, significantly improving the coverage and efficiency of monitoring. By optimizing the sensor system design, the maximum energy conversion of the energy harvesting unit is achieved. In order to verify the function and practicality More > Graphic Abstract

    The Advanced Structural Health Monitoring by Non-Destructive Self-Powered Wireless Lightweight Sensor

  • Open Access

    ARTICLE

    Load Balancing Control Strategy for Multi-Substation Flexible Interconnection Distribution Networks Considering Unbalanced Power Compensation

    Qiji Dai1, Jikai Li2,*, Bohui Ning1, Yutao Xu1, Chang Liu2, Xuan Zhang1

    Energy Engineering, Vol.122, No.10, pp. 4061-4080, 2025, DOI:10.32604/ee.2025.067304 - 30 September 2025

    Abstract Aiming at the challenge of complex load balancing coordination for a three-phase four-leg (3P4L) based multi-ended low voltage flexible DC distribution system (M-LVDC) considering unbalanced power compensation, this paper proposes a phase-split power decoupling unbalanced compensation strategy based load balancing strategy for 3P4L based M-LVDC. Firstly, the topology and operation principle of the 3P4L-based M-LVDC system is introduced, and quasi-proportional resonant (QPR) based phase-split power current control for the 3P4L converter is proposed. Secondly, a load-balancing control strategy considering unbalanced compensation for 3P4L-based M-LVDC is presented, in which the control diagrams for each 3P4L-based converter… More >

  • Open Access

    ARTICLE

    Impact of Stiffener Configuration on the Structural Performance of Orthotropic Steel Bridge Deck

    Pinyi Zhao1,*, Yu Qin2, Bo Wu3, Yu Chen1, Xingyu Chen1, Jinsheng Wen4

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1367-1386, 2025, DOI:10.32604/sdhm.2025.067558 - 05 September 2025

    Abstract The impact of longitudinal stiffener configurations on the structural performance of orthotropic steel bridge decks (OSD) was systematically investigated, with emphasis on U-shaped, T-shaped, and rectangular ribs. Finite element analysis was employed to evaluate deformation and stress distribution under three critical loading scenarios: vertical uniform load, vertical eccentric load, and lateral uniform load. Equivalent models ensuring identical steel usage, moment of inertia, and centroid alignment were established to compare five stiffener configurations. Results demonstrate that U-rib configurations exhibit superior performance in controlling local displacements and minimizing stress concentrations. Under eccentric loading, U-ribs significantly reduce deck… More >

Displaying 1-10 on page 1 of 144. Per Page