Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Dimensionality Reduction Using Optimized Self-Organized Map Technique for Hyperspectral Image Classification

    S. Srinivasan, K. Rajakumar*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2481-2496, 2023, DOI:10.32604/csse.2023.040817 - 28 July 2023

    Abstract

    The high dimensionalhyperspectral image classification is a challenging task due to the spectral feature vectors. The high correlation between these features and the noises greatly affects the classification performances. To overcome this, dimensionality reduction techniques are widely used. Traditional image processing applications recently propose numerous deep learning models. However, in hyperspectral image classification, the features of deep learning models are less explored. Thus, for efficient hyperspectral image classification, a depth-wise convolutional neural network is presented in this research work. To handle the dimensionality issue in the classification process, an optimized self-organized map model is employed

    More >

  • Open Access

    ARTICLE

    Computer-Aided Diagnosis for Tuberculosis Classification with Water Strider Optimization Algorithm

    José Escorcia-Gutierrez1,*, Roosvel Soto-Diaz2, Natasha Madera3, Carlos Soto3, Francisco Burgos-Florez2, Alexander Rodríguez4, Romany F. Mansour5

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1337-1353, 2023, DOI:10.32604/csse.2023.035253 - 09 February 2023

    Abstract Computer-aided diagnosis (CAD) models exploit artificial intelligence (AI) for chest X-ray (CXR) examination to identify the presence of tuberculosis (TB) and can improve the feasibility and performance of CXR for TB screening and triage. At the same time, CXR interpretation is a time-consuming and subjective process. Furthermore, high resemblance among the radiological patterns of TB and other lung diseases can result in misdiagnosis. Therefore, computer-aided diagnosis (CAD) models using machine learning (ML) and deep learning (DL) can be designed for screening TB accurately. With this motivation, this article develops a Water Strider Optimization with Deep… More >

  • Open Access

    ARTICLE

    Metaheuristic Secure Clustering Scheme for Energy Harvesting Wireless Sensor Networks

    S. Nithya Roopa1, P. Anandababu2,*, Sibi Amaran3, Rajesh Verma4

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 497-512, 2023, DOI:10.32604/csse.2023.029133 - 16 August 2022

    Abstract Recently, energy harvesting wireless sensor networks (EHWSN) have increased significant attention among research communities. By harvesting energy from the neighboring environment, the sensors in EHWSN resolve the energy constraint problem and offers lengthened network lifetime. Clustering is one of the proficient ways for accomplishing even improved lifetime in EHWSN. The clustering process intends to appropriately elect the cluster heads (CHs) and construct clusters. Though several models are available in the literature, it is still needed to accomplish energy efficiency and security in EHWSN. In this view, this study develops a novel Chaotic Rider Optimization Based… More >

  • Open Access

    ARTICLE

    Rider Optimization Algorithm Based Optimal Cloud Server Selection in E-Learning

    R. Soundhara Raja Pandian*, C. Christopher Columbus

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1749-1762, 2023, DOI:10.32604/csse.2023.028014 - 15 June 2022

    Abstract Currently, e-learning is one of the most prevalent educational methods because of its need in today’s world. Virtual classrooms and web-based learning are becoming the new method of teaching remotely. The students experience a lack of access to resources commonly the educational material. In remote locations, educational institutions face significant challenges in accessing various web-based materials due to bandwidth and network infrastructure limitations. The objective of this study is to demonstrate an optimization and queueing technique for allocating optimal servers and slots for users to access cloud-based e-learning applications. The proposed method provides the optimization… More >

  • Open Access

    ARTICLE

    Novel Block Chain Technique for Data Privacy and Access Anonymity in Smart Healthcare

    J. Priya*, C. Palanisamy

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 243-259, 2023, DOI:10.32604/iasc.2023.025719 - 06 June 2022

    Abstract The Internet of Things (IoT) and Cloud computing are gaining popularity due to their numerous advantages, including the efficient utilization of internet and computing resources. In recent years, many more IoT applications have been extensively used. For instance, Healthcare applications execute computations utilizing the user’s private data stored on cloud servers. However, the main obstacles faced by the extensive acceptance and usage of these emerging technologies are security and privacy. Moreover, many healthcare data management system applications have emerged, offering solutions for distinct circumstances. But still, the existing system has issues with specific security issues,… More >

Displaying 1-10 on page 1 of 5. Per Page