Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    YOLO-CRD: A Lightweight Model for the Detection of Rice Diseases in Natural Environments

    Rui Zhang1,2, Tonghai Liu1,2,*, Wenzheng Liu1,2, Chaungchuang Yuan1,2, Xiaoyue Seng1,2, Tiantian Guo1,2, Xue Wang1,2

    Phyton-International Journal of Experimental Botany, Vol.93, No.6, pp. 1275-1296, 2024, DOI:10.32604/phyton.2024.052397 - 27 June 2024

    Abstract Rice diseases can adversely affect both the yield and quality of rice crops, leading to the increased use of pesticides and environmental pollution. Accurate detection of rice diseases in natural environments is crucial for both operational efficiency and quality assurance. Deep learning-based disease identification technologies have shown promise in automatically discerning disease types. However, effectively extracting early disease features in natural environments remains a challenging problem. To address this issue, this study proposes the YOLO-CRD method. This research selected images of common rice diseases, primarily bakanae disease, bacterial brown spot, leaf rice fever, and dry… More >

  • Open Access

    REVIEW

    A Review on the Application of Deep Learning Methods in Detection and Identification of Rice Diseases and Pests

    Xiaozhong Yu1,2,*, Jinhua Zheng1,2

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 197-225, 2024, DOI:10.32604/cmc.2023.043943 - 30 January 2024

    Abstract In rice production, the prevention and management of pests and diseases have always received special attention. Traditional methods require human experts, which is costly and time-consuming. Due to the complexity of the structure of rice diseases and pests, quickly and reliably recognizing and locating them is difficult. Recently, deep learning technology has been employed to detect and identify rice diseases and pests. This paper introduces common publicly available datasets; summarizes the applications on rice diseases and pests from the aspects of image recognition, object detection, image segmentation, attention mechanism, and few-shot learning methods according to More >

  • Open Access

    ARTICLE

    Identification of Rice Leaf Disease Using Improved ShuffleNet V2

    Yang Zhou, Chunjiao Fu, Yuting Zhai, Jian Li, Ziqi Jin, Yanlei Xu*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4501-4517, 2023, DOI:10.32604/cmc.2023.038446 - 31 March 2023

    Abstract Accurate identification of rice diseases is crucial for controlling diseases and improving rice yield. To improve the classification accuracy of rice diseases, this paper proposed a classification and identification method based on an improved ShuffleNet V2 (GE-ShuffleNet) model. Firstly, the Ghost module is used to replace the convolution in the two basic unit modules of ShuffleNet V2, and the unimportant convolution is deleted from the two basic unit modules of ShuffleNet V2. The Hardswish activation function is applied to replace the ReLU activation function to improve the identification accuracy of the model. Secondly, an effective… More >

  • Open Access

    ARTICLE

    Rice Disease Diagnosis System (RDDS)

    Sandhya Venu Vasantha1, Shirina Samreen2,*, Yelganamoni Lakshmi Aparna3

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1895-1914, 2022, DOI:10.32604/cmc.2022.028504 - 18 May 2022

    Abstract Hitherto, Rice (Oryza Sativa) has been one of the most demanding food crops in the world, cultivated in larger quantities, but loss in both quality and quantity of yield due to abiotic and biotic stresses has become a major concern. During cultivation, the crops are most prone to biotic stresses such as bacterial, viral, fungal diseases and pests. These stresses can drastically damage the crop. Lately and erroneously recognized crop diseases can increase fertilizers costs and major yield loss which results in high financial loss and adverse impact on nation’s economy. The proven methods of… More >

  • Open Access

    ARTICLE

    Designing and Evaluating a Collaborative Knowledge Management Framework for Leaf Disease Detection

    Komal Bashir1,*, Mariam Rehman2, Afnan Bashir3, Faria Kanwal1

    Computer Systems Science and Engineering, Vol.42, No.2, pp. 751-777, 2022, DOI:10.32604/csse.2022.022247 - 04 January 2022

    Abstract Knowledge Management (KM) has become a dynamic concept for inquiry in research. The management of knowledge from multiple sources requires a systematic approach that can facilitate capturing all important aspects related to a particular discipline, several KM frameworks have been designed to serve this purpose. This research aims to propose a Collaborative Knowledge Management (CKM) Framework that bridges gaps and overcomes weaknesses in existing frameworks. The paper also validates the framework by evaluating its effectiveness for the agriculture sector of Pakistan. A software LCWU aKMS was developed which serves as a practical implementation of the… More >

Displaying 1-10 on page 1 of 5. Per Page