Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    A Hybrid Experimental-Numerical Framework for Identifying Viscoelastic Parameters of 3D-Printed Polyurethane Samples: Cyclic Tests, Creep/Relaxation and Inverse Finite Element Analysis

    Nikita Golovkin1,2, Olesya Nikulenkova3, Vsevolod Pobezhimov1, Alexander Nesmelov1, Sergei Chvalun1, Fedor Sorokin3, Arthur Krupnin1,3,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073161 - 12 January 2026

    Abstract This study presents and verifies a hybrid methodology for reliable determination of parameters in structural rheological models (Zener, Burgers, and Maxwell) describing the viscoelastic behavior of polyurethane specimens manufactured using extrusion-based 3D printing. Through comprehensive testing, including cyclic compression at strain rates ranging from 0.12 to 120 mm/min (0%–15% strain) and creep/relaxation experiments (10%–30% strain), the lumped parameters were independently determined using both analytical and numerical solutions of the models’ differential equations, followed by cross-verification in additional experiments. Numerical solutions for creep and relaxation problems were obtained using finite element analysis, with the three-parameter Mooney-Rivlin… More > Graphic Abstract

    A Hybrid Experimental-Numerical Framework for Identifying Viscoelastic Parameters of 3D-Printed Polyurethane Samples: Cyclic Tests, Creep/Relaxation and Inverse Finite Element Analysis

  • Open Access

    PROCEEDINGS

    4D Printed Shape Memory Polymer Behavior Simulation and Validation

    Zhao Wang1, Jun Liu1, Xiaoying Qi2, Chadur Venkatesan2, Sharon Nai2, David W. Rosen1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.011890

    Abstract Shape memory polymers (SMP) have many applications as actuators in soft robotics. However, predicting their shape change behavior is challenging, which makes designing suitable actuators difficult. For thermally stimulated shape memory polymers, constitutive models of shape change behavior show promise in enabling predictable shape changes, which is necessary for actuator design. These models are usually classified as either rheological or phase transition, with the former being more general, although non-physical in nature, and the latter being more physically significant [1]. Of interest in this work is 2-state shape change transitions for single-material actuators; that is,… More >

  • Open Access

    ARTICLE

    Utilization of Bitter Orange Seed as a Novel Pectin Source: Compositional and Rheological Characterization

    Diako Khodaei1, Mohammad Nejatian2,*, Hassan Ahmadi Gavlighi2, Farhad Garavand3,*, Ilaria Cacciotti4

    Journal of Renewable Materials, Vol.10, No.11, pp. 2805-2817, 2022, DOI:10.32604/jrm.2022.021752 - 29 June 2022

    Abstract The seeds from bitter orange, the by-product of juice making units, hold the potential to facilitate novel, easy yet high-quality pectin extraction. To test this hypothesis, orange seed pectin (OSP) was extracted by distilled water and its compositional parameters and rheological behavior were then evaluated. Results showed that galacturonic acid was the major component of OSP (∼425 mg/g) confirming the purity of the extracted pectin, followed by glucose and some minor neutral sugars. The Mw (weight-average molar mass), Rn (number average molar mass), and Rz (z-average molar mass) values for the OSP were 4511.8 kDa,… More > Graphic Abstract

    Utilization of Bitter Orange Seed as a Novel Pectin Source: Compositional and Rheological Characterization

  • Open Access

    ARTICLE

    Modelling of Landslides: An SPH Approach

    M. Pastor1, T. Blanc1, V. Drempetic1 , P. Dutto1 , M. Martín Stickle1, A.Yagüe1

    CMES-Computer Modeling in Engineering & Sciences, Vol.109-110, No.2, pp. 183-220, 2015, DOI:10.3970/cmes.2015.109.183

    Abstract This paper presents a model (mathematical, rheological and numerical) for triggering and propagation of landslides presenting coupling between the solid skeleton and the pore fluid. The model consists of two sub models, a depth integrated model incorporating the propagation equations, and a 1D model describing pore pressure evolution. The depth integrated sub model is discretized using a set of SPH nodes, each one having an associated finite difference mesh for discretizing the pore pressure evolution. The model we propose differs from other depth integrated models with coupled pore pressures proposed in the past in the More >

Displaying 1-10 on page 1 of 4. Per Page