Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (50)
  • Open Access

    ARTICLE

    Blueberry anthocyanins extract attenuates oxidative stress and angiogenesis on an in vitro high glucose-induced retinopathy model through the miR-33/GLCCI1 axis

    WENBIN LUO1, YULING ZOU2, HONGXI WU3, ZHONGYI YANG1, ZHIPENG YOU2,*

    BIOCELL, Vol.48, No.8, pp. 1275-1284, 2024, DOI:10.32604/biocell.2024.051045 - 02 August 2024

    Abstract Background: Diabetes retinopathy (DR) is a complication of diabetes that affects patients’ vision. Previous studies have found blueberry anthocyanins extract (BAE) can inhibit the progression of DR, but its mechanism is not completely clear. Methods: To study the role of BAE in diabetes retinopathy, we treated human retinal endothelial cells (HRCECs) with 30 mM high glucose to simulate the microenvironment of diabetes retinopathy and used BAE to intervene the in vitro high glucose-induced retinopathy model. HRCEC cell viability and apoptosis rates were examined by Cell Counting Kit 8 (CCK-8) assay and flow cytometry assay. The binding… More >

  • Open Access

    ARTICLE

    Deep Transfer Learning Models for Mobile-Based Ocular Disorder Identification on Retinal Images

    Roseline Oluwaseun Ogundokun1,2, Joseph Bamidele Awotunde3, Hakeem Babalola Akande4, Cheng-Chi Lee5,6,*, Agbotiname Lucky Imoize7,8

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 139-161, 2024, DOI:10.32604/cmc.2024.052153 - 18 July 2024

    Abstract Mobile technology is developing significantly. Mobile phone technologies have been integrated into the healthcare industry to help medical practitioners. Typically, computer vision models focus on image detection and classification issues. MobileNetV2 is a computer vision model that performs well on mobile devices, but it requires cloud services to process biometric image information and provide predictions to users. This leads to increased latency. Processing biometrics image datasets on mobile devices will make the prediction faster, but mobiles are resource-restricted devices in terms of storage, power, and computational speed. Hence, a model that is small in size,… More >

  • Open Access

    ARTICLE

    DeepSVDNet: A Deep Learning-Based Approach for Detecting and Classifying Vision-Threatening Diabetic Retinopathy in Retinal Fundus Images

    Anas Bilal1, Azhar Imran2, Talha Imtiaz Baig3,4, Xiaowen Liu1,*, Haixia Long1, Abdulkareem Alzahrani5, Muhammad Shafiq6

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 511-528, 2024, DOI:10.32604/csse.2023.039672 - 19 March 2024

    Abstract Artificial Intelligence (AI) is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy (VTDR), which is a leading cause of visual impairment and blindness worldwide. However, previous automated VTDR detection methods have mainly relied on manual feature extraction and classification, leading to errors. This paper proposes a novel VTDR detection and classification model that combines different models through majority voting. Our proposed methodology involves preprocessing, data augmentation, feature extraction, and classification stages. We use a hybrid convolutional neural network-singular value decomposition (CNN-SVD) model for feature extraction and selection and an improved SVM-RBF with a Decision Tree More >

  • Open Access

    ARTICLE

    ProNet Adaptive Retinal Vessel Segmentation Algorithm Based on Improved UperNet Network

    Sijia Zhu1,*, Pinxiu Wang2, Ke Shen1

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 283-302, 2024, DOI:10.32604/cmc.2023.045506 - 30 January 2024

    Abstract This paper proposes a new network structure, namely the ProNet network. Retinal medical image segmentation can help clinical diagnosis of related eye diseases and is essential for subsequent rational treatment. The baseline model of the ProNet network is UperNet (Unified perceptual parsing Network), and the backbone network is ConvNext (Convolutional Network). A network structure based on depth-separable convolution and 1 × 1 convolution is used, which has good performance and robustness. We further optimise ProNet mainly in two aspects. One is data enhancement using increased noise and slight angle rotation, which can significantly increase the… More >

  • Open Access

    ARTICLE

    Fuzzy Difference Equations in Diagnoses of Glaucoma from Retinal Images Using Deep Learning

    D. Dorathy Prema Kavitha1, L. Francis Raj1, Sandeep Kautish2,#, Abdulaziz S. Almazyad3, Karam M. Sallam4, Ali Wagdy Mohamed5,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 801-816, 2024, DOI:10.32604/cmes.2023.030902 - 30 December 2023

    Abstract The intuitive fuzzy set has found important application in decision-making and machine learning. To enrich and utilize the intuitive fuzzy set, this study designed and developed a deep neural network-based glaucoma eye detection using fuzzy difference equations in the domain where the retinal images converge. Retinal image detections are categorized as normal eye recognition, suspected glaucomatous eye recognition, and glaucomatous eye recognition. Fuzzy degrees associated with weighted values are calculated to determine the level of concentration between the fuzzy partition and the retinal images. The proposed model was used to diagnose glaucoma using retinal images… More >

  • Open Access

    ARTICLE

    Inhibition of VEGF-A expression in hypoxia-exposed fetal retinal microvascular endothelial cells by exosomes derived from human umbilical cord mesenchymal stem cells

    JING LI1,2, WANWAN FAN4, LILI HAO1, YONGSHENG LI5, GUOCHENG YU1, WEI SUN6, XIANQIONG LUO2,*, JINGXIANG ZHONG1,3,*

    BIOCELL, Vol.47, No.11, pp. 2485-2494, 2023, DOI:10.32604/biocell.2023.044177 - 27 November 2023

    Abstract Objective: This study aimed to investigate the potential of human umbilical cord mesenchymal stem cell (hucMSC)-derived exosomes (hucMSC-Exos) in inhibiting hypoxia-induced cell hyper proliferation and overexpression of vascular endothelial growth factor A (VEGF-A) in immature human fetal retinal microvascular endothelial cells (hfRMECs). Methods: Exosomes were isolated from hucMSCs using cryogenic ultracentrifugation and characterized through various techniques, including transmission electron microscopy, nanoparticle tracking analysis, bicinchoninic acid assays, and western blotting. The hfRMECs were identified using von Willebrand factor (vWF) co-staining and divided into four groups: a control group cultured under normoxic condition, a hypoxic model group, a hypoxic… More > Graphic Abstract

    Inhibition of VEGF-A expression in hypoxia-exposed fetal retinal microvascular endothelial cells by exosomes derived from human umbilical cord mesenchymal stem cells

  • Open Access

    ARTICLE

    DT-Net: Joint Dual-Input Transformer and CNN for Retinal Vessel Segmentation

    Wenran Jia1, Simin Ma1, Peng Geng1, Yan Sun2,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3393-3411, 2023, DOI:10.32604/cmc.2023.040091 - 08 October 2023

    Abstract Retinal vessel segmentation in fundus images plays an essential role in the screening, diagnosis, and treatment of many diseases. The acquired fundus images generally have the following problems: uneven illumination, high noise, and complex structure. It makes vessel segmentation very challenging. Previous methods of retinal vascular segmentation mainly use convolutional neural networks on U Network (U-Net) models, and they have many limitations and shortcomings, such as the loss of microvascular details at the end of the vessels. We address the limitations of convolution by introducing the transformer into retinal vessel segmentation. Therefore, we propose a… More >

  • Open Access

    ARTICLE

    A Unique Discrete Wavelet & Deterministic Walk-Based Glaucoma Classification Approach Using Image-Specific Enhanced Retinal Images

    Krishna Santosh Naidana, Soubhagya Sankar Barpanda*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 699-720, 2023, DOI:10.32604/csse.2023.036744 - 26 May 2023

    Abstract Glaucoma is a group of ocular atrophy diseases that cause progressive vision loss by affecting the optic nerve. Because of its asymptomatic nature, glaucoma has become the leading cause of human blindness worldwide. In this paper, a novel computer-aided diagnosis (CAD) approach for glaucomatous retinal image classification has been introduced. It extracts graph-based texture features from structurally improved fundus images using discrete wavelet-transformation (DWT) and deterministic tree-walk (DTW) procedures. Retinal images are considered from both public repositories and eye hospitals. Images are enhanced with image-specific luminance and gradient transitions for both contrast and texture improvement.… More >

  • Open Access

    ARTICLE

    Strategy for Rapid Diabetic Retinopathy Exposure Based on Enhanced Feature Extraction Processing

    V. Banupriya1,*, S. Anusuya2

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5597-5613, 2023, DOI:10.32604/cmc.2023.038696 - 29 April 2023

    Abstract In the modern world, one of the most severe eye infections brought on by diabetes is known as diabetic retinopathy (DR), which will result in retinal damage, and, thus, lead to blindness. Diabetic retinopathy (DR) can be well treated with early diagnosis. Retinal fundus images of humans are used to screen for lesions in the retina. However, detecting DR in the early stages is challenging due to the minimal symptoms. Furthermore, the occurrence of diseases linked to vascular anomalies brought on by DR aids in diagnosing the condition. Nevertheless, the resources required for manually identifying… More >

  • Open Access

    ARTICLE

    Dual-Branch-UNet: A Dual-Branch Convolutional Neural Network for Medical Image Segmentation

    Muwei Jian1,2,#,*, Ronghua Wu1,#, Hongyu Chen1, Lanqi Fu3, Chengdong Yang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 705-716, 2023, DOI:10.32604/cmes.2023.027425 - 23 April 2023

    Abstract In intelligent perception and diagnosis of medical equipment, the visual and morphological changes in retinal vessels are closely related to the severity of cardiovascular diseases (e.g., diabetes and hypertension). Intelligent auxiliary diagnosis of these diseases depends on the accuracy of the retinal vascular segmentation results. To address this challenge, we design a Dual-Branch-UNet framework, which comprises a Dual-Branch encoder structure for feature extraction based on the traditional U-Net model for medical image segmentation. To be more explicit, we utilize a novel parallel encoder made up of various convolutional modules to enhance the encoder portion of… More >

Displaying 1-10 on page 1 of 50. Per Page