Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (14)
  • Open Access

    ARTICLE

    Research on Vehicle Joint Radar Communication Resource Optimization Method Based on GNN-DRL

    Zeyu Chen1, Jian Sun2,*, Zhengda Huan1, Ziyi Zhang1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-17, 2026, DOI:10.32604/cmc.2025.071182 - 09 December 2025

    Abstract To address the issues of poor adaptability in resource allocation and low multi-agent cooperation efficiency in Joint Radar and Communication (JRC) systems under dynamic environments, an intelligent optimization framework integrating Deep Reinforcement Learning (DRL) and Graph Neural Network (GNN) is proposed. This framework models resource allocation as a Partially Observable Markov Game (POMG), designs a weighted reward function to balance radar and communication efficiencies, adopts the Multi-Agent Proximal Policy Optimization (MAPPO) framework, and integrates Graph Convolutional Networks (GCN) and Graph Sample and Aggregate (GraphSAGE) to optimize information interaction. Simulations show that, compared with traditional methods More >

  • Open Access

    REVIEW

    Review of Metaheuristic Optimization Techniques for Enhancing E-Health Applications

    Qun Song1, Chao Gao1, Han Wu1, Zhiheng Rao1, Huafeng Qin1,*, Simon Fong1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-49, 2026, DOI:10.32604/cmc.2025.070918 - 09 December 2025

    Abstract Metaheuristic algorithms, renowned for strong global search capabilities, are effective tools for solving complex optimization problems and show substantial potential in e-Health applications. This review provides a systematic overview of recent advancements in metaheuristic algorithms and highlights their applications in e-Health. We selected representative algorithms published between 2019 and 2024, and quantified their influence using an entropy-weighted method based on journal impact factors and citation counts. CThe Harris Hawks Optimizer (HHO) demonstrated the highest early citation impact. The study also examined applications in disease prediction models, clinical decision support, and intelligent health monitoring. Notably, the More >

  • Open Access

    ARTICLE

    Lightweight Multi-Agent Edge Framework for Cybersecurity and Resource Optimization in Mobile Sensor Networks

    Fatima Al-Quayed*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-16, 2026, DOI:10.32604/cmc.2025.069102 - 10 November 2025

    Abstract Due to the growth of smart cities, many real-time systems have been developed to support smart cities using Internet of Things (IoT) and emerging technologies. They are formulated to collect the data for environment monitoring and automate the communication process. In recent decades, researchers have made many efforts to propose autonomous systems for manipulating network data and providing on-time responses in critical operations. However, the widespread use of IoT devices in resource-constrained applications and mobile sensor networks introduces significant research challenges for cybersecurity. These systems are vulnerable to a variety of cyberattacks, including unauthorized access,… More >

  • Open Access

    ARTICLE

    An IoT-Enabled Hybrid DRL-XAI Framework for Transparent Urban Water Management

    Qamar H. Naith1,*, H. Mancy2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 387-405, 2025, DOI:10.32604/cmes.2025.066917 - 31 July 2025

    Abstract Effective water distribution and transparency are threatened with being outrightly undermined unless the good name of urban infrastructure is maintained. With improved control systems in place to check leakage, variability of pressure, and conscientiousness of energy, issues that previously went unnoticed are now becoming recognized. This paper presents a grandiose hybrid framework that combines Multi-Agent Deep Reinforcement Learning (MADRL) with Shapley Additive Explanations (SHAP)-based Explainable AI (XAI) for adaptive and interpretable water resource management. In the methodology, the agents perform decentralized learning of the control policies for the pumps and valves based on the real-time… More >

  • Open Access

    ARTICLE

    LLE-Fuse: Lightweight Infrared and Visible Light Image Fusion Based on Low-Light Image Enhancement

    Song Qian, Guzailinuer Yiming, Ping Li, Junfei Yang, Yan Xue, Shuping Zhang*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4069-4091, 2025, DOI:10.32604/cmc.2025.059931 - 06 March 2025

    Abstract Infrared and visible light image fusion technology integrates feature information from two different modalities into a fused image to obtain more comprehensive information. However, in low-light scenarios, the illumination degradation of visible light images makes it difficult for existing fusion methods to extract texture detail information from the scene. At this time, relying solely on the target saliency information provided by infrared images is far from sufficient. To address this challenge, this paper proposes a lightweight infrared and visible light image fusion method based on low-light enhancement, named LLE-Fuse. The method is based on the… More >

  • Open Access

    ARTICLE

    ANNDRA-IoT: A Deep Learning Approach for Optimal Resource Allocation in Internet of Things Environments

    Abdullah M. Alqahtani1,*, Kamran Ahmad Awan2, Abdulaziz Almaleh3, Osama Aletri4

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 3155-3179, 2025, DOI:10.32604/cmes.2025.061472 - 03 March 2025

    Abstract Efficient resource management within Internet of Things (IoT) environments remains a pressing challenge due to the increasing number of devices and their diverse functionalities. This study introduces a neural network-based model that uses Long-Short-Term Memory (LSTM) to optimize resource allocation under dynamically changing conditions. Designed to monitor the workload on individual IoT nodes, the model incorporates long-term data dependencies, enabling adaptive resource distribution in real time. The training process utilizes Min-Max normalization and grid search for hyperparameter tuning, ensuring high resource utilization and consistent performance. The simulation results demonstrate the effectiveness of the proposed method, More >

  • Open Access

    ARTICLE

    MATD3-Based End-Edge Collaborative Resource Optimization for NOMA-Assisted Industrial Wireless Networks

    Ru Hao1,2,3, Chi Xu2,3,*, Jing Liu1

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3203-3222, 2025, DOI:10.32604/cmc.2024.059689 - 17 February 2025

    Abstract Non-orthogonal multiple access (NOMA) technology has recently been widely integrated into multi-access edge computing (MEC) to support task offloading in industrial wireless networks (IWNs) with limited radio resources. This paper minimizes the system overhead regarding task processing delay and energy consumption for the IWN with hybrid NOMA and orthogonal multiple access (OMA) schemes. Specifically, we formulate the system overhead minimization (SOM) problem by considering the limited computation and communication resources and NOMA efficiency. To solve the complex mixed-integer nonconvex problem, we combine the multi-agent twin delayed deep deterministic policy gradient (MATD3) and convex optimization, namely More >

  • Open Access

    ARTICLE

    Tricube Weighted Linear Regression and Interquartile for Cloud Infrastructural Resource Optimization

    Neema George1,*, B. K. Anoop1, Vinodh P. Vijayan2

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 2281-2297, 2023, DOI:10.32604/csse.2023.028117 - 21 December 2022

    Abstract Cloud infrastructural resource optimization is the process of precisely selecting the allocating the correct resources either to a workload or application. When workload execution, accuracy, and cost are accurately stabilized in opposition to the best possible framework in real-time, efficiency is attained. In addition, every workload or application required for the framework is characteristic and these essentials change over time. But, the existing method was failed to ensure the high Quality of Service (QoS). In order to address this issue, a Tricube Weighted Linear Regression-based Inter Quartile (TWLR-IQ) for Cloud Infrastructural Resource Optimization is introduced.… More >

  • Open Access

    ARTICLE

    Hybrid Whale Optimization Algorithm for Resource Optimization in Cloud E-Healthcare Applications

    Punit Gupta1, Sanjit Bhagat2, Dinesh Kumar Saini1,*, Ashish Kumar2, Mohammad Alahmadi3, Prakash Chandra Sharma1

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 5659-5676, 2022, DOI:10.32604/cmc.2022.023056 - 14 January 2022

    Abstract In the next generation of computing environment e-health care services depend on cloud services. The Cloud computing environment provides a real-time computing environment for e-health care applications. But these services generate a huge number of computational tasks, real-time computing and comes with a deadline, so conventional cloud optimization models cannot fulfil the task in the least time and within the deadline. To overcome this issue many resource optimization meta-heuristic models are been proposed but these models cannot find a global best solution to complete the task in the least time and manage utilization with the… More >

  • Open Access

    ARTICLE

    Distance Matrix and Markov Chain Based Sensor Localization in WSN

    Omaima Bamasaq1, Daniyal Alghazzawi2, Surbhi Bhatia3, Pankaj Dadheech4,*, Farrukh Arslan5, Sudhakar Sengan6, Syed Hamid Hassan2

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 4051-4068, 2022, DOI:10.32604/cmc.2022.023634 - 07 December 2021

    Abstract Applications based on Wireless Sensor Networks (WSN) have shown to be quite useful in monitoring a particular geographic area of interest. Relevant geometries of the surrounding environment are essential to establish a successful WSN topology. But it is literally hard because constructing a localization algorithm that tracks the exact location of Sensor Nodes (SN) in a WSN is always a challenging task. In this research paper, Distance Matrix and Markov Chain (DM-MC) model is presented as node localization technique in which Distance Matrix and Estimation Matrix are used to identify the position of the node. The… More >

Displaying 1-10 on page 1 of 14. Per Page