Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Gain Enhancement of Dielectric Resonator Antenna Using Electromagnetic Bandgap Structure

    Amor Smida1,2,*

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1613-1623, 2022, DOI:10.32604/cmc.2022.022289 - 03 November 2021

    Abstract High gain antennas are highly desirable for long-range wireless communication systems. In this paper, a compact, low profile, and high gain dielectric resonator antenna is proposed, fabricated, experimentally tested, and verified. The proposed antenna system has a cylindrical dielectric resonator antenna with a height of 9 mm and a radius of 6.35 mm as a radiating element. The proposed dielectric resonator antenna is sourced with a slot while the slot is excited with a rectangular microstrip transmission line. The microstrip transmission line is designed for a 50 Ω impedance to provide maximum power to the… More >

  • Open Access

    ARTICLE

    Gyro-Chirality Effect of Bianisotropic Substrate on the Resonant Frequency and Half-power Bandwidth of Rectangular Microstrip Patch Antenna

    CMC-Computers, Materials & Continua, Vol.52, No.2, pp. 123-131, 2016, DOI:10.3970/cmc.2016.052.123

    Abstract In this paper, the gyrotropic bi-anisotropy of the chiral medium in substrate constitutive parameters (xc and hc) of a rectangular microstrip patch antenna is introduced in order to observe its effects on the complex resonant frequency and half-power bandwidth. The analysis is based on the full-wave spectral domain approach using the Moment Method, with sinusoidal type basis functions. The numerical calculations related to the dominant mode have been carried out, and it has been observed that the resonant frequency and the bandwidth are directly linked to the medium chirality. The new results can be considered More >

  • Open Access

    ARTICLE

    Young's Modulus Measurement of Thin Films by Resonant Frequency Method Using Magnetostrictive Resonator

    Hao-Miao Zhou1, Fang Li1, Qiang Ye1, Ji-Xiang Zhao1, Zhe-Lei Xia1, YingTang2, Jing Wei3

    CMC-Computers, Materials & Continua, Vol.13, No.3, pp. 235-248, 2009, DOI:10.3970/cmc.2009.013.235

    Abstract At present, there are many methods about Young's modulus measurement of thin films, but so far there is no recognized simple, non-destructive and cheaper standard measurement method. Considering thin films with various thicknesses were sputter deposited on the magnetostrictive resonator and monitoring the resonator's first-order longitudinal resonant frequency shift both before and after deposition induced by external magnetic field, an Young's modulus assessing method based on classical laminated plate theory is presented in this paper. Using the measured natural frequencies of Au, Cu, Cr, Al and SiC materials with various thicknesses in the literature, the More >

Displaying 1-10 on page 1 of 3. Per Page