Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    ARTICLE

    Cost-Sensitive Dual-Stream Residual Networks for Imbalanced Classification

    Congcong Ma1,2, Jiaqi Mi1, Wanlin Gao1,2, Sha Tao1,2,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4243-4261, 2024, DOI:10.32604/cmc.2024.054506 - 12 September 2024

    Abstract Imbalanced data classification is the task of classifying datasets where there is a significant disparity in the number of samples between different classes. This task is prevalent in practical scenarios such as industrial fault diagnosis, network intrusion detection, cancer detection, etc. In imbalanced classification tasks, the focus is typically on achieving high recognition accuracy for the minority class. However, due to the challenges presented by imbalanced multi-class datasets, such as the scarcity of samples in minority classes and complex inter-class relationships with overlapping boundaries, existing methods often do not perform well in multi-class imbalanced data… More >

  • Open Access

    ARTICLE

    Ensemble Approach Combining Deep Residual Networks and BiGRU with Attention Mechanism for Classification of Heart Arrhythmias

    Batyrkhan Omarov1,2,*, Meirzhan Baikuvekov1, Daniyar Sultan1, Nurzhan Mukazhanov3, Madina Suleimenova2, Maigul Zhekambayeva3

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 341-359, 2024, DOI:10.32604/cmc.2024.052437 - 18 July 2024

    Abstract This research introduces an innovative ensemble approach, combining Deep Residual Networks (ResNets) and Bidirectional Gated Recurrent Units (BiGRU), augmented with an Attention Mechanism, for the classification of heart arrhythmias. The escalating prevalence of cardiovascular diseases necessitates advanced diagnostic tools to enhance accuracy and efficiency. The model leverages the deep hierarchical feature extraction capabilities of ResNets, which are adept at identifying intricate patterns within electrocardiogram (ECG) data, while BiGRU layers capture the temporal dynamics essential for understanding the sequential nature of ECG signals. The integration of an Attention Mechanism refines the model’s focus on critical segments… More >

  • Open Access

    ARTICLE

    Driving Activity Classification Using Deep Residual Networks Based on Smart Glasses Sensors

    Narit Hnoohom1, Sakorn Mekruksavanich2, Anuchit Jitpattanakul3,4,*

    Intelligent Automation & Soft Computing, Vol.38, No.2, pp. 139-151, 2023, DOI:10.32604/iasc.2023.033940 - 05 February 2024

    Abstract Accidents are still an issue in an intelligent transportation system, despite developments in self-driving technology (ITS). Drivers who engage in risky behavior account for more than half of all road accidents. As a result, reckless driving behaviour can cause congestion and delays. Computer vision and multimodal sensors have been used to study driving behaviour categorization to lessen this problem. Previous research has also collected and analyzed a wide range of data, including electroencephalography (EEG), electrooculography (EOG), and photographs of the driver’s face. On the other hand, driving a car is a complicated action that requires… More >

  • Open Access

    ARTICLE

    Strategy for Rapid Diabetic Retinopathy Exposure Based on Enhanced Feature Extraction Processing

    V. Banupriya1,*, S. Anusuya2

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5597-5613, 2023, DOI:10.32604/cmc.2023.038696 - 29 April 2023

    Abstract In the modern world, one of the most severe eye infections brought on by diabetes is known as diabetic retinopathy (DR), which will result in retinal damage, and, thus, lead to blindness. Diabetic retinopathy (DR) can be well treated with early diagnosis. Retinal fundus images of humans are used to screen for lesions in the retina. However, detecting DR in the early stages is challenging due to the minimal symptoms. Furthermore, the occurrence of diseases linked to vascular anomalies brought on by DR aids in diagnosing the condition. Nevertheless, the resources required for manually identifying… More >

  • Open Access

    ARTICLE

    Deep Capsule Residual Networks for Better Diagnosis Rate in Medical Noisy Images

    P. S. Arthy1,*, A. Kavitha2

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2959-2971, 2023, DOI:10.32604/iasc.2023.032511 - 15 March 2023

    Abstract With the advent of Machine and Deep Learning algorithms, medical image diagnosis has a new perception of diagnosis and clinical treatment. Regrettably, medical images are more susceptible to capturing noises despite the peak in intelligent imaging techniques. However, the presence of noise images degrades both the diagnosis and clinical treatment processes. The existing intelligent methods suffer from the deficiency in handling the diverse range of noise in the versatile medical images. This paper proposes a novel deep learning network which learns from the substantial extent of noise in medical data samples to alleviate this challenge.… More >

  • Open Access

    ARTICLE

    An Automatic Deep Neural Network Model for Fingerprint Classification

    Amira Tarek Mahmoud1,*, Wael A. Awad2, Gamal Behery2, Mohamed Abouhawwash3,4, Mehedi Masud5, Hanan Aljuaid6, Ahmed Ismail Ebada7

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 2007-2023, 2023, DOI:10.32604/iasc.2023.031692 - 05 January 2023

    Abstract The accuracy of fingerprint recognition model is extremely important due to its usage in forensic and security fields. Any fingerprint recognition system has particular network architecture whereas many other networks achieve higher accuracy. To solve this problem in a unified model, this paper proposes a model that can automatically specify itself. So, it is called an automatic deep neural network (ADNN). Our algorithm can specify the appropriate architecture of the neural network used and some significant parameters of this network. These parameters are the number of filters, epochs, and iterations. It guarantees the highest accuracy… More >

  • Open Access

    ARTICLE

    Deep Attention Network for Pneumonia Detection Using Chest X-Ray Images

    Sukhendra Singh1, Sur Singh Rawat2, Manoj Gupta3, B. K. Tripathi4, Faisal Alanzi5, Arnab Majumdar6, Pattaraporn Khuwuthyakorn7, Orawit Thinnukool7,*

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1673-1691, 2023, DOI:10.32604/cmc.2023.032364 - 22 September 2022

    Abstract In computer vision, object recognition and image categorization have proven to be difficult challenges. They have, nevertheless, generated responses to a wide range of difficult issues from a variety of fields. Convolution Neural Networks (CNNs) have recently been identified as the most widely proposed deep learning (DL) algorithms in the literature. CNNs have unquestionably delivered cutting-edge achievements, particularly in the areas of image classification, speech recognition, and video processing. However, it has been noticed that the CNN-training assignment demands a large amount of data, which is in low supply, especially in the medical industry, and… More >

  • Open Access

    ARTICLE

    Microphone Array Speech Separation Algorithm Based on TC-ResNet

    Lin Zhou1,*, Yue Xu1, Tianyi Wang1, Kun Feng1, Jingang Shi2

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 2705-2716, 2021, DOI:10.32604/cmc.2021.017080 - 21 July 2021

    Abstract Traditional separation methods have limited ability to handle the speech separation problem in high reverberant and low signal-to-noise ratio (SNR) environments, and thus achieve unsatisfactory results. In this study, a convolutional neural network with temporal convolution and residual network (TC-ResNet) is proposed to realize speech separation in a complex acoustic environment. A simplified steered-response power phase transform, denoted as GSRP-PHAT, is employed to reduce the computational cost. The extracted features are reshaped to a special tensor as the system inputs and implements temporal convolution, which not only enlarges the receptive field of the convolution layer More >

  • Open Access

    ARTICLE

    An Optimized Deep Residual Network with a Depth Concatenated Block for Handwritten Characters Classification

    Gibrael Abosamra*, Hadi Oqaibi

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 1-28, 2021, DOI:10.32604/cmc.2021.015318 - 22 March 2021

    Abstract Even though much advancements have been achieved with regards to the recognition of handwritten characters, researchers still face difficulties with the handwritten character recognition problem, especially with the advent of new datasets like the Extended Modified National Institute of Standards and Technology dataset (EMNIST). The EMNIST dataset represents a challenge for both machine-learning and deep-learning techniques due to inter-class similarity and intra-class variability. Inter-class similarity exists because of the similarity between the shapes of certain characters in the dataset. The presence of intra-class variability is mainly due to different shapes written by different writers for… More >

  • Open Access

    ARTICLE

    3-Dimensional Bag of Visual Words Framework on Action Recognition

    Shiqi Wang1, Yimin Yang1, *, Ruizhong Wei1, Qingming Jonathan Wu2

    CMC-Computers, Materials & Continua, Vol.63, No.3, pp. 1081-1091, 2020, DOI:10.32604/cmc.2020.09648 - 30 April 2020

    Abstract Human motion recognition plays a crucial role in the video analysis framework. However, a given video may contain a variety of noises, such as an unstable background and redundant actions, that are completely different from the key actions. These noises pose a great challenge to human motion recognition. To solve this problem, we propose a new method based on the 3-Dimensional (3D) Bag of Visual Words (BoVW) framework. Our method includes two parts: The first part is the video action feature extractor, which can identify key actions by analyzing action features. In the video action More >

Displaying 1-10 on page 1 of 10. Per Page