Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (48)
  • Open Access

    ARTICLE

    Multi-CNN Fusion Framework for Predictive Violence Detection in Animated Media

    Tahira Khalil1, Sadeeq Jan2,*, Rania M. Ghoniem3, Muhammad Imran Khan Khalil1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.072655 - 09 December 2025

    Abstract The contemporary era is characterized by rapid technological advancements, particularly in the fields of communication and multimedia. Digital media has significantly influenced the daily lives of individuals of all ages. One of the emerging domains in digital media is the creation of cartoons and animated videos. The accessibility of the internet has led to a surge in the consumption of cartoons among young children, presenting challenges in monitoring and controlling the content they view. The prevalence of cartoon videos containing potentially violent scenes has raised concerns regarding their impact, especially on young and impressionable minds.… More >

  • Open Access

    ARTICLE

    Efficient Image Deraining through a Stage-Wise Dual-Residual Network with Cross-Dimensional Spatial Attention

    Tiantian Wang1,2, Zhihua Hu3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2357-2381, 2025, DOI:10.32604/cmes.2025.073640 - 26 November 2025

    Abstract Rain streaks introduced by atmospheric precipitation significantly degrade image quality and impair the reliability of high-level vision tasks. We present a novel image deraining framework built on a three-stage dual-residual architecture that progressively restores rain-degraded content while preserving fine structural details. Each stage begins with a multi-scale feature extractor and a channel attention module that adaptively emphasizes informative representations for rain removal. The core restoration is achieved via enhanced dual-residual blocks, which stabilize training and mitigate feature degradation across layers. To further refine representations, we integrate cross-dimensional spatial attention supervised by ground-truth guidance, ensuring that More >

  • Open Access

    ARTICLE

    A Quantum-Enhanced Biometric Fusion Network for Cybersecurity Using Face and Voice Recognition

    Abrar M. Alajlan1,*, Abdul Razaque2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 919-946, 2025, DOI:10.32604/cmes.2025.071996 - 30 October 2025

    Abstract Biometric authentication provides a reliable, user-specific approach for identity verification, significantly enhancing access control and security against unauthorized intrusions in cybersecurity. Unimodal biometric systems that rely on either face or voice recognition encounter several challenges, including inconsistent data quality, environmental noise, and susceptibility to spoofing attacks. To address these limitations, this research introduces a robust multi-modal biometric recognition framework, namely Quantum-Enhanced Biometric Fusion Network. The proposed model strengthens security and boosts recognition accuracy through the fusion of facial and voice features. Furthermore, the model employs advanced pre-processing techniques to generate high-quality facial images and voice… More >

  • Open Access

    ARTICLE

    Autonomous Cyber-Physical System for Anomaly Detection and Attack Prevention Using Transformer-Based Attention Generative Adversarial Residual Network

    Abrar M. Alajlan1,*, Marwah M. Almasri2

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5237-5262, 2025, DOI:10.32604/cmc.2025.066736 - 23 October 2025

    Abstract Cyber-Physical Systems integrated with information technologies introduce vulnerabilities that extend beyond traditional cyber threats. Attackers can non-invasively manipulate sensors and spoof controllers, which in turn increases the autonomy of the system. Even though the focus on protecting against sensor attacks increases, there is still uncertainty about the optimal timing for attack detection. Existing systems often struggle to manage the trade-off between latency and false alarm rate, leading to inefficiencies in real-time anomaly detection. This paper presents a framework designed to monitor, predict, and control dynamic systems with a particular emphasis on detecting and adapting to… More >

  • Open Access

    ARTICLE

    Deep ResNet Strategy for the Classification of Wind Shear Intensity Near Airport Runway

    Afaq Khattak1,*, Pak-wai Chan2, Feng Chen3, Abdulrazak H. Almaliki4

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1565-1584, 2025, DOI:10.32604/cmes.2025.059914 - 27 January 2025

    Abstract Intense wind shear (I-WS) near airport runways presents a critical challenge to aviation safety, necessitating accurate and timely classification to mitigate risks during takeoff and landing. This study proposes the application of advanced Residual Network (ResNet) architectures including ResNet34 and ResNet50 for classifying I-WS and Non-Intense Wind Shear (NI-WS) events using Doppler Light Detection and Ranging (LiDAR) data from Hong Kong International Airport (HKIA). Unlike conventional models such as feedforward neural networks (FNNs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs), ResNet provides a distinct advantage in addressing key challenges such as capturing intricate… More >

  • Open Access

    ARTICLE

    Privacy Preservation in IoT Devices by Detecting Obfuscated Malware Using Wide Residual Network

    Deema Alsekait1, Mohammed Zakariah2, Syed Umar Amin3,*, Zafar Iqbal Khan3, Jehad Saad Alqurni4

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2395-2436, 2024, DOI:10.32604/cmc.2024.055469 - 18 November 2024

    Abstract The widespread adoption of Internet of Things (IoT) devices has resulted in notable progress in different fields, improving operational effectiveness while also raising concerns about privacy due to their vulnerability to virus attacks. Further, the study suggests using an advanced approach that utilizes machine learning, specifically the Wide Residual Network (WRN), to identify hidden malware in IoT systems. The research intends to improve privacy protection by accurately identifying malicious software that undermines the security of IoT devices, using the MalMemAnalysis dataset. Moreover, thorough experimentation provides evidence for the effectiveness of the WRN-based strategy, resulting in… More >

  • Open Access

    ARTICLE

    Mural Anomaly Region Detection Algorithm Based on Hyperspectral Multiscale Residual Attention Network

    Bolin Guo1,2, Shi Qiu1,*, Pengchang Zhang1, Xingjia Tang3

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1809-1833, 2024, DOI:10.32604/cmc.2024.056706 - 15 October 2024

    Abstract Mural paintings hold significant historical information and possess substantial artistic and cultural value. However, murals are inevitably damaged by natural environmental factors such as wind and sunlight, as well as by human activities. For this reason, the study of damaged areas is crucial for mural restoration. These damaged regions differ significantly from undamaged areas and can be considered abnormal targets. Traditional manual visual processing lacks strong characterization capabilities and is prone to omissions and false detections. Hyperspectral imaging can reflect the material properties more effectively than visual characterization methods. Thus, this study employs hyperspectral imaging… More >

  • Open Access

    ARTICLE

    Graph Attention Residual Network Based Routing and Fault-Tolerant Scheduling Mechanism for Data Flow in Power Communication Network

    Zhihong Lin1, Zeng Zeng2, Yituan Yu2, Yinlin Ren1, Xuesong Qiu1,*, Jinqian Chen1

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1641-1665, 2024, DOI:10.32604/cmc.2024.055802 - 15 October 2024

    Abstract For permanent faults (PF) in the power communication network (PCN), such as link interruptions, the time-sensitive networking (TSN) relied on by PCN, typically employs spatial redundancy fault-tolerance methods to keep service stability and reliability, which often limits TSN scheduling performance in fault-free ideal states. So this paper proposes a graph attention residual network-based routing and fault-tolerant scheduling mechanism (GRFS) for data flow in PCN, which specifically includes a communication system architecture for integrated terminals based on a cyclic queuing and forwarding (CQF) model and fault recovery method, which reduces the impact of faults by simplified… More >

  • Open Access

    ARTICLE

    Cost-Sensitive Dual-Stream Residual Networks for Imbalanced Classification

    Congcong Ma1,2, Jiaqi Mi1, Wanlin Gao1,2, Sha Tao1,2,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4243-4261, 2024, DOI:10.32604/cmc.2024.054506 - 12 September 2024

    Abstract Imbalanced data classification is the task of classifying datasets where there is a significant disparity in the number of samples between different classes. This task is prevalent in practical scenarios such as industrial fault diagnosis, network intrusion detection, cancer detection, etc. In imbalanced classification tasks, the focus is typically on achieving high recognition accuracy for the minority class. However, due to the challenges presented by imbalanced multi-class datasets, such as the scarcity of samples in minority classes and complex inter-class relationships with overlapping boundaries, existing methods often do not perform well in multi-class imbalanced data… More >

  • Open Access

    ARTICLE

    Ensemble Approach Combining Deep Residual Networks and BiGRU with Attention Mechanism for Classification of Heart Arrhythmias

    Batyrkhan Omarov1,2,*, Meirzhan Baikuvekov1, Daniyar Sultan1, Nurzhan Mukazhanov3, Madina Suleimenova2, Maigul Zhekambayeva3

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 341-359, 2024, DOI:10.32604/cmc.2024.052437 - 18 July 2024

    Abstract This research introduces an innovative ensemble approach, combining Deep Residual Networks (ResNets) and Bidirectional Gated Recurrent Units (BiGRU), augmented with an Attention Mechanism, for the classification of heart arrhythmias. The escalating prevalence of cardiovascular diseases necessitates advanced diagnostic tools to enhance accuracy and efficiency. The model leverages the deep hierarchical feature extraction capabilities of ResNets, which are adept at identifying intricate patterns within electrocardiogram (ECG) data, while BiGRU layers capture the temporal dynamics essential for understanding the sequential nature of ECG signals. The integration of an Attention Mechanism refines the model’s focus on critical segments… More >

Displaying 1-10 on page 1 of 48. Per Page