Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (182)
  • Open Access

    ARTICLE

    Ensemble Approach Combining Deep Residual Networks and BiGRU with Attention Mechanism for Classification of Heart Arrhythmias

    Batyrkhan Omarov1,2,*, Meirzhan Baikuvekov1, Daniyar Sultan1, Nurzhan Mukazhanov3, Madina Suleimenova2, Maigul Zhekambayeva3

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 341-359, 2024, DOI:10.32604/cmc.2024.052437

    Abstract This research introduces an innovative ensemble approach, combining Deep Residual Networks (ResNets) and Bidirectional Gated Recurrent Units (BiGRU), augmented with an Attention Mechanism, for the classification of heart arrhythmias. The escalating prevalence of cardiovascular diseases necessitates advanced diagnostic tools to enhance accuracy and efficiency. The model leverages the deep hierarchical feature extraction capabilities of ResNets, which are adept at identifying intricate patterns within electrocardiogram (ECG) data, while BiGRU layers capture the temporal dynamics essential for understanding the sequential nature of ECG signals. The integration of an Attention Mechanism refines the model’s focus on critical segments… More >

  • Open Access

    ARTICLE

    Joint Rain Streaks & Haze Removal Network for Object Detection

    Ragini Thatikonda1, Prakash Kodali1,*, Ramalingaswamy Cheruku2, Eswaramoorthy K.V3

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4683-4702, 2024, DOI:10.32604/cmc.2024.051844

    Abstract In the realm of low-level vision tasks, such as image deraining and dehazing, restoring images distorted by adverse weather conditions remains a significant challenge. The emergence of abundant computational resources has driven the dominance of deep Convolutional Neural Networks (CNNs), supplanting traditional methods reliant on prior knowledge. However, the evolution of CNN architectures has tended towards increasing complexity, utilizing intricate structures to enhance performance, often at the expense of computational efficiency. In response, we propose the Selective Kernel Dense Residual M-shaped Network (SKDRMNet), a flexible solution adept at balancing computational efficiency with network accuracy. A… More >

  • Open Access

    ARTICLE

    Abnormal Traffic Detection for Internet of Things Based on an Improved Residual Network

    Tingting Su1, Jia Wang1,*, Wei Hu2,*, Gaoqiang Dong1, Jeon Gwanggil3

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4433-4448, 2024, DOI:10.32604/cmc.2024.051535

    Abstract Along with the progression of Internet of Things (IoT) technology, network terminals are becoming continuously more intelligent. IoT has been widely applied in various scenarios, including urban infrastructure, transportation, industry, personal life, and other socio-economic fields. The introduction of deep learning has brought new security challenges, like an increment in abnormal traffic, which threatens network security. Insufficient feature extraction leads to less accurate classification results. In abnormal traffic detection, the data of network traffic is high-dimensional and complex. This data not only increases the computational burden of model training but also makes information extraction more… More >

  • Open Access

    ARTICLE

    Workout Action Recognition in Video Streams Using an Attention Driven Residual DC-GRU Network

    Arnab Dey1,*, Samit Biswas1, Dac-Nhuong Le2

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3067-3087, 2024, DOI:10.32604/cmc.2024.049512

    Abstract Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers the likelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions in video streams holds significant importance in computer vision research, as it aims to enhance exercise adherence, enable instant recognition, advance fitness tracking technologies, and optimize fitness routines. However, existing action datasets often lack diversity and specificity for workout actions, hindering the development of accurate recognition models. To address this gap, the Workout Action Video dataset (WAVd) has been introduced as a significant… More >

  • Open Access

    ARTICLE

    Shear Let Transform Residual Learning Approach for Single-Image Super-Resolution

    Israa Ismail1,*, Ghada Eltaweel1, Mohamed Meselhy Eltoukhy1,2

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3193-3209, 2024, DOI:10.32604/cmc.2023.043873

    Abstract Super-resolution techniques are employed to enhance image resolution by reconstructing high-resolution images from one or more low-resolution inputs. Super-resolution is of paramount importance in the context of remote sensing, satellite, aerial, security and surveillance imaging. Super-resolution remote sensing imagery is essential for surveillance and security purposes, enabling authorities to monitor remote or sensitive areas with greater clarity. This study introduces a single-image super-resolution approach for remote sensing images, utilizing deep shearlet residual learning in the shearlet transform domain, and incorporating the Enhanced Deep Super-Resolution network (EDSR). Unlike conventional approaches that estimate residuals between high and… More >

  • Open Access

    ARTICLE

    Ghost Module Based Residual Mixture of Self-Attention and Convolution for Online Signature Verification

    Fangjun Luan1,2,3, Xuewen Mu1,2,3, Shuai Yuan1,2,3,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 695-712, 2024, DOI:10.32604/cmc.2024.048502

    Abstract Online Signature Verification (OSV), as a personal identification technology, is widely used in various industries. However, it faces challenges, such as incomplete feature extraction, low accuracy, and computational heaviness. To address these issues, we propose a novel approach for online signature verification, using a one-dimensional Ghost-ACmix Residual Network (1D-ACGRNet), which is a Ghost-ACmix Residual Network that combines convolution with a self-attention mechanism and performs improvement by using Ghost method. The Ghost-ACmix Residual structure is introduced to leverage both self-attention and convolution mechanisms for capturing global feature information and extracting local information, effectively complementing whole and… More >

  • Open Access

    ARTICLE

    Fatigue Crack Propagation Law of Corroded Steel Box Girders in Long Span Bridges

    Ying Wang1,*, Longxiao Chao1, Jun Chen2, Songbai Jiang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 201-227, 2024, DOI:10.32604/cmes.2024.046129

    Abstract In order to investigate the fatigue performance of orthotropic anisotropic steel bridge decks, this study realizes the simulation of the welding process through elastic-plastic finite element theory, thermal-structural sequential coupling, and the birth-death element method. The simulated welding residual stresses are introduced into the multiscale finite element model of the bridge as the initial stress. Furthermore, the study explores the impact of residual stress on crack propagation in the fatigue-vulnerable components of the corroded steel box girder. The results indicate that fatigue cracks at the weld toe of the top deck, the weld root of… More > Graphic Abstract

    Fatigue Crack Propagation Law of Corroded Steel Box Girders in Long Span Bridges

  • Open Access

    ARTICLE

    Study on Image Recognition Algorithm for Residual Snow and Ice on Photovoltaic Modules

    Yongcan Zhu1,2, Jiawen Wang1, Ye Zhang1,2, Long Zhao1, Botao Jiang1, Xinbo Huang1,*

    Energy Engineering, Vol.121, No.4, pp. 895-911, 2024, DOI:10.32604/ee.2023.041002

    Abstract The accumulation of snow and ice on PV modules can have a detrimental impact on power generation, leading to reduced efficiency for prolonged periods. Thus, it becomes imperative to develop an intelligent system capable of accurately assessing the extent of snow and ice coverage on PV modules. To address this issue, the article proposes an innovative ice and snow recognition algorithm that effectively segments the ice and snow areas within the collected images. Furthermore, the algorithm incorporates an analysis of the morphological characteristics of ice and snow coverage on PV modules, allowing for the establishment… More >

  • Open Access

    ARTICLE

    Intelligent Fault Diagnosis Method of Rolling Bearings Based on Transfer Residual Swin Transformer with Shifted Windows

    Haomiao Wang1, Jinxi Wang2, Qingmei Sui2,*, Faye Zhang2, Yibin Li1, Mingshun Jiang2, Phanasindh Paitekul3

    Structural Durability & Health Monitoring, Vol.18, No.2, pp. 91-110, 2024, DOI:10.32604/sdhm.2023.041522

    Abstract Due to their robust learning and expression ability for complex features, the deep learning (DL) model plays a vital role in bearing fault diagnosis. However, since there are fewer labeled samples in fault diagnosis, the depth of DL models in fault diagnosis is generally shallower than that of DL models in other fields, which limits the diagnostic performance. To solve this problem, a novel transfer residual Swin Transformer (RST) is proposed for rolling bearings in this paper. RST has 24 residual self-attention layers, which use the hierarchical design and the shifted window-based residual self-attention. Combined More >

  • Open Access

    ARTICLE

    A Normalizing Flow-Based Bidirectional Mapping Residual Network for Unsupervised Defect Detection

    Lanyao Zhang1, Shichao Kan2, Yigang Cen3, Xiaoling Chen1, Linna Zhang1,*, Yansen Huang4,5

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1631-1648, 2024, DOI:10.32604/cmc.2024.046924

    Abstract Unsupervised methods based on density representation have shown their abilities in anomaly detection, but detection performance still needs to be improved. Specifically, approaches using normalizing flows can accurately evaluate sample distributions, mapping normal features to the normal distribution and anomalous features outside it. Consequently, this paper proposes a Normalizing Flow-based Bidirectional Mapping Residual Network (NF-BMR). It utilizes pre-trained Convolutional Neural Networks (CNN) and normalizing flows to construct discriminative source and target domain feature spaces. Additionally, to better learn feature information in both domain spaces, we propose the Bidirectional Mapping Residual Network (BMR), which maps sample… More > Graphic Abstract

    A Normalizing Flow-Based Bidirectional Mapping Residual Network for Unsupervised Defect Detection

Displaying 1-10 on page 1 of 182. Per Page