Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Numerical Simulation of Two-Phase Flow in Glutenite Reservoirs for Optimized Deployment in Horizontal Wells

    Yuhui Zhou1,2,3,*, Shichang Ju4, Qijun Lyu4, Hongfei Chen4, Xuebiao Du4, Aiping Zheng4, Wenshun Chen4, Ning Li4

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.1, pp. 245-259, 2023, DOI:10.32604/fdmp.2023.019971 - 02 August 2022

    Abstract It is known that the pore media characteristics of glutenite reservoirs are different from those of conventional sandstone reservoirs. Low reservoir permeability and naturally developed microfractures make water injection in this kind of reservoir very difficult. In this study, new exploitation methods are explored. Using a real glutenite reservoir as a basis, a three-dimensional fine geological model is elaborated. Then, combining the model with reservoir performance information, and through a historical fitting analysis, the saturation abundance distribution of remaining oil in the reservoir is determined. It is shown that, using this information, predictions can be More >

  • Open Access

    ARTICLE

    Simulation of Oil-Water Flow in a Shale Reservoir Using a Radial Basis Function

    Zenglin Wang1, Liaoyuan Zhang1, Anhai Zhong2, Ran Ding2, Mingjing Lu2,3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.6, pp. 1795-1804, 2022, DOI:10.32604/fdmp.2022.020020 - 27 June 2022

    Abstract Due to the difficulties associated with preprocessing activities and poor grid convergence when simulating shale reservoirs in the context of traditional grid methods, in this study an innovative two-phase oil-water seepage model is elaborated. The modes is based on the radial basis meshless approach and is used to determine the pressure and water saturation in a sample reservoir. Two-dimensional examples demonstrate that, when compared to the finite difference method, the radial basis function method produces less errors and is more accurate in predicting daily oil production. The radial basis function and finite difference methods provide More >

Displaying 1-10 on page 1 of 2. Per Page