Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (416)
  • Open Access

    ARTICLE

    Research on Grid-Connected Control Strategy of Distributed Generator Based on Improved Linear Active Disturbance Rejection Control

    Xin Mao*, Hongsheng Su, Jingxiu Li

    Energy Engineering, Vol.121, No.12, pp. 3929-3951, 2024, DOI:10.32604/ee.2024.057106 - 22 November 2024

    Abstract The virtual synchronous generator (VSG) technology has been proposed to address the problem of system frequency and active power oscillation caused by grid-connected new energy power sources. However, the traditional voltage-current double-closed-loop control used in VSG has the disadvantages of poor disturbance immunity and insufficient dynamic response. In light of the issues above, a virtual synchronous generator voltage outer-loop control strategy based on improved linear autonomous disturbance rejection control (ILADRC) is put forth for consideration. Firstly, an improved first-order linear self-immunity control structure is established for the characteristics of the voltage outer loop; then, the… More >

  • Open Access

    REVIEW

    Research Progress of Photovoltaic Power Prediction Technology Based on Artificial Intelligence Methods

    Daixuan Zhou1, Yujin Liu1, Xu Wang2, Fuxing Wang1, Yan Jia2,*

    Energy Engineering, Vol.121, No.12, pp. 3573-3616, 2024, DOI:10.32604/ee.2024.055853 - 22 November 2024

    Abstract With the increasing proportion of renewable energy in China’s energy structure, among which photovoltaic power generation is also developing rapidly. As the photovoltaic (PV) power output is highly unstable and subject to a variety of factors, it brings great challenges to the stable operation and dispatch of the power grid. Therefore, accurate short-term PV power prediction is of great significance to ensure the safe grid connection of PV energy. Currently, the short-term prediction of PV power has received extensive attention and research, but the accuracy and precision of the prediction have to be further improved. More > Graphic Abstract

    Research Progress of Photovoltaic Power Prediction Technology Based on Artificial Intelligence Methods

  • Open Access

    REVIEW

    AI-Powered Innovations in High-Tech Research and Development: From Theory to Practice

    Mitra Madanchian1,*, Hamed Taherdoost1,2,3,4

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2133-2159, 2024, DOI:10.32604/cmc.2024.057094 - 18 November 2024

    Abstract This comparative review explores the dynamic and evolving landscape of artificial intelligence (AI)-powered innovations within high-tech research and development (R&D). It delves into both theoretical models and practical applications across a broad range of industries, including biotechnology, automotive, aerospace, and telecommunications. By examining critical advancements in AI algorithms, machine learning, deep learning models, simulations, and predictive analytics, the review underscores the transformative role AI has played in advancing theoretical research and shaping cutting-edge technologies. The review integrates both qualitative and quantitative data derived from academic studies, industry reports, and real-world case studies to showcase the… More >

  • Open Access

    PROCEEDINGS

    Research on the Synergistic Mechanism of Photothermal-Chemotherapy-Immunotherapy of Multi-Functional Nanoparticles Against Gastric Cancer

    Erdong Shen1, Ting Pan1, Pan Guo1, Ke Chen1, Rui Xu1, Mei Yang1, Dahe Zhan1, Fang Fang1, Qinghui Wu1,*, Jianbing Hu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-3, 2024, DOI:10.32604/icces.2024.012772

    Abstract Objective
    This study investigates the synergistic effects of a novel multifunctional nanoparticle on gastric cancer treatment through photothermal therapy, chemotherapy, and immunotherapy.

    Method
    Synthesize hollow mesoporous Prussian blue nanoparticles and load them with luteolin. Use exosomes to encapsulate the nanoparticles and modify the surface of the targeted peptide GX1. Detect the morphology of nanoparticles using a nanoparticle size analyzer and transmission electron microscopy. Use Coomassie Brilliant Blue to detect the effect of extracellular vesicle encapsulation. Detect the thermal conversion efficiency of nanoparticles under specific laser irradiation through infrared and ultraviolet spectroscopy, as well as the release rate… More >

  • Open Access

    REVIEW

    Revolutionizing stem cell research: unbiased insights through single-cell sequencing

    HAO WU#, NA HUO#, SITUO WANG, ZIWEI LIU, YI JIANG*, QUAN SHI*

    BIOCELL, Vol.48, No.11, pp. 1531-1542, 2024, DOI:10.32604/biocell.2024.054278 - 07 November 2024

    Abstract Stem cells have shown great application potential in wound repair, tissue regeneration, and disease treatment. Therefore, a full understanding of stem cells and their related regulatory mechanisms in disease treatment is conducive to improving the therapeutic effect of stem cells. However, thus far, there are still many unsolved mysteries in the field of stem cells due to technical limitations, which hinder the in-depth exploration of stem cells and their wide clinical application. Single-cell sequencing (SCS) has provided very powerful and unbiased insights into cell gene expression profiles at the single-cell level, bringing exciting results to More >

  • Open Access

    PROCEEDINGS

    Aerothermoelasticity Research of Hypersonic TPS Panel using Kriging Surrogate Reduced Order Model

    Zijun Yi1, Dan Xie2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012704

    Abstract Hypersonic aircraft face complex aerodynamic forces and severe aerothermal issues. While aerodynamic and aerothermal empirical solutions exhibit high computational efficiency, they lack precision. Numerical approaches equipped with accuracy but come with high computational costs. To address the contradiction between precision and efficiency, some research on hypersonic unsteady aerodynamic and aerothermal Reduced Order Models (ROMs) was conducted in this study, using Kriging surrogate method.
    Meanwhile, hypersonic aircraft typically feature numerous thin-wall structures. The strong coupling of aerodynamic, aerothermal, and elasticity will inevitably lead to aerothermoelastic effects. This study centered on the Thermal Protection System (TPS) panel… More >

  • Open Access

    ARTICLE

    A Bibliometric Analysis of Positive Mental Health Research and Development in the Social Science Citation Index

    Petrayuna Dian Omega1, Joniarto Parung1,*, Listyo Yuwanto1, Yuh-Shan Ho2,*

    International Journal of Mental Health Promotion, Vol.26, No.10, pp. 817-836, 2024, DOI:10.32604/ijmhp.2024.056501 - 31 October 2024

    Abstract Background: This study aimed to conduct a bibliometric analysis of positive mental health, focusing on citation performance, article title, abstract, author keywords, Keyword Plus, and their development trends. The novelty of this study is a pioneer within the field of positive mental health. Therefore, it delivered new ideas for researchers and practitioners who had concerns about positive mental health in terms of trends research which covered recommended articles and the research focus in recent years. Methods: The data were retrieved on 30 April 2024 from the Social Sciences Citation Index (SSCI) of Clarivate Analytics’ Web of… More >

  • Open Access

    ARTICLE

    Prospective Cohort Research of Aortic Root Dilatation after Surgical Repair in Adults with Tetralogy of Fallot (TRANSIT)

    Hiroki Nagamine1, Masaru Miura1,*, Jun Maeda1, Takumi Nishiki1, Maasa Sato2, Fumie Takechi3, Shigeru Tateno4, Tomoko Ishizu5, Yumi Shiina6, Ken Kato7, Hiroshi Ono8, Hiroyuki Yamagishi9, Koichiro Niwa6

    Congenital Heart Disease, Vol.19, No.4, pp. 351-362, 2024, DOI:10.32604/chd.2024.051837 - 31 October 2024

    Abstract Background: Aortic root dilatation occurs in adults with tetralogy of Fallot (TOF) after surgical repair, but the longitudinal changes are unclear. The main research aim is to determine the annual dilatation rate of aorta in adults with repaired TOF. Methods: The present, multicentric, prospective cohort study assessed the rate of aortic diameter change in adults aged 20 years or older with TOF, including pulmonary artery atresia, who underwent surgical repair. Clinical data, focusing on echocardiograms, were collected at three-year intervals from seven hospitals. Results: In total, 104 patients (58 males; median age: 29 years) were enrolled.… More > Graphic Abstract

    Prospective Cohort Research of Aortic Root Dilatation after Surgical Repair in Adults with Tetralogy of Fallot (TRANSIT)

  • Open Access

    ARTICLE

    Research on the Microstructure Construction Technology of Fully Degraded Polymer Vascular Stent Based on Electric Field Driven 3D Printing

    Yanpu Chao1,*, Fulai Cao1, Hao Yi2,3,*, Shuai Lu1, Yaohui Li1, Hui Cen1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.11, pp. 2489-2508, 2024, DOI:10.32604/fdmp.2024.051962 - 28 October 2024

    Abstract The so-called fourth-generation biodegradable vascular stent has become a research hotspot in the field of bio-engineering because of its good degradation ability and drug-loading characteristics. However, the preparation of polymer-degraded vascular stents is affected by known problem such as poor process flexibility, low forming accuracy, large diameter wall thickness, limited complex pore structure, weak mechanical properties of radial support and high process cost. In this study, a deposition technique based on a high-voltage electric-field-driven continuous rotating jet is proposed to fabricate fully degraded polymer vascular stents. The experimental results show that, due to the rotation… More > Graphic Abstract

    Research on the Microstructure Construction Technology of Fully Degraded Polymer Vascular Stent Based on Electric Field Driven 3D Printing

  • Open Access

    ARTICLE

    Research on Defect Detection of Wind Turbine Blades Based on Morphology and Improved Otsu Algorithm Using Infrared Images

    Shuang Kang1, Yinchao He1,2, Wenwen Li1,*, Sen Liu2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 933-949, 2024, DOI:10.32604/cmc.2024.056614 - 15 October 2024

    Abstract To address the issues of low accuracy and high false positive rate in traditional Otsu algorithm for defect detection on infrared images of wind turbine blades (WTB), this paper proposes a technique that combines morphological image enhancement with an improved Otsu algorithm. First, mathematical morphology’s differential multi-scale white and black top-hat operations are applied to enhance the image. The algorithm employs entropy as the objective function to guide the iteration process of image enhancement, selecting appropriate structural element scales to execute differential multi-scale white and black top-hat transformations, effectively enhancing the detail features of defect… More >

Displaying 1-10 on page 1 of 416. Per Page