Vinay Arora1, Karun Verma1, Rohan Singh Leekha2, Kyungroul Lee3, Chang Choi4,*, Takshi Gupta5, Kashish Bhatia6
CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 4151-4168, 2021, DOI:10.32604/cmc.2021.019178
- 24 August 2021
Abstract The early diagnosis of pre-existing coronary disorders helps to control complications such as pulmonary hypertension, irregular cardiac functioning, and heart failure. Machine-based learning of heart sound is an {efficient} technology which can help minimize the workload of manual auscultation by automatically identifying irregular cardiac sounds. Phonocardiogram (PCG) and electrocardiogram (ECG) waveforms provide the much-needed information for the diagnosis of these diseases. In this work, the researchers have converted the heart sound signal into its corresponding repeating pattern-based spectrogram. PhysioNet 2016 and PASCAL 2011 have been taken as the benchmark datasets to perform experimentation. The existing More >