Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Modeling Reliability Engineering Data Using Scale-Invariant Quasi-Inverse Lindley Model

    Mohamed Kayid*, Tareq Alsayed

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1847-1860, 2022, DOI:10.32604/cmc.2022.025401 - 24 February 2022

    Abstract An important property that any lifetime model should satisfy is scale invariance. In this paper, a new scale-invariant quasi-inverse Lindley (QIL) model is presented and studied. Its basic properties, including moments, quantiles, skewness, kurtosis, and Lorenz curve, have been investigated. In addition, the well-known dynamic reliability measures, such as failure rate (FR), reversed failure rate (RFR), mean residual life (MRL), mean inactivity time (MIT), quantile residual life (QRL), and quantile inactivity time (QIT) are discussed. The FR function considers the decreasing or upside-down bathtub-shaped, and the MRL and median residual lifetime may have a bathtub-shaped… More >

  • Open Access

    ARTICLE

    Quantile Version of Mathai-Haubold Entropy of Order Statistics

    Ibrahim M. Almanjahie1,2,*, Javid Gani Dar3, Amer Ibrahim Al-Omari4, Aijaz Mir5

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 907-925, 2021, DOI:10.32604/cmes.2021.014896 - 11 August 2021

    Abstract Many researchers measure the uncertainty of a random variable using quantile-based entropy techniques. These techniques are useful in engineering applications and have some exceptional characteristics than their distribution function method. Considering order statistics, the key focus of this article is to propose new quantile-based Mathai-Haubold entropy and investigate its characteristics. The divergence measure of the Mathai-Haubold is also considered and some of its properties are established. Further, based on order statistics, we propose the residual entropy of the quantile-based Mathai-Haubold and some of its property results are proved. The performance of the proposed quantile-based Mathai-Haubold More >

Displaying 1-10 on page 1 of 2. Per Page