Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Harnessing Machine Learning for Superior Prediction of Uniaxial Compressive Strength in Reinforced Soilcrete

    Ala’a R. Al-Shamasneh1, Faten Khalid Karim2, Arsalan Mahmoodzadeh3,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 281-303, 2025, DOI:10.32604/cmc.2025.065748 - 09 June 2025

    Abstract Soilcrete is a composite material of soil and cement that is highly valued in the construction industry. Accurate measurement of its mechanical properties is essential, but laboratory testing methods are expensive, time-consuming, and include inaccuracies. Machine learning (ML) algorithms provide a more efficient alternative for this purpose, so after assessment with a statistical extraction method, ML algorithms including back-propagation neural network (BPNN), K-nearest neighbor (KNN), radial basis function (RBF), feed-forward neural networks (FFNN), and support vector regression (SVR) for predicting the uniaxial compressive strength (UCS) of soilcrete, were proposed in this study. The developed models… More >

  • Open Access

    ARTICLE

    Time-History Dynamic Characteristics of Reinforced Soil-Retaining Walls

    Lianhua Ma1, Min Huang1, Linfeng Han2,*

    Structural Durability & Health Monitoring, Vol.18, No.6, pp. 853-869, 2024, DOI:10.32604/sdhm.2024.051374 - 20 September 2024

    Abstract Given the complexities of reinforced soil materials’ constitutive relationships, this paper compares reinforced soil composite materials to a sliding structure between steel bars and soil and proposes a reinforced soil constitutive model that takes this sliding into account. A finite element dynamic time history calculation software for composite response analysis was created using the Fortran programming language, and time history analysis was performed on reinforced soil retaining walls and gravity retaining walls. The vibration time histories of reinforced soil retaining walls and gravity retaining walls were computed, and the dynamic reactions of the two types More >

Displaying 1-10 on page 1 of 2. Per Page