Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17)
  • Open Access

    ARTICLE

    Determination of the Pile Drivability Using Random Forest Optimized by Particle Swarm Optimization and Bayesian Optimizer

    Shengdong Cheng1, Juncheng Gao1,*, Hongning Qi2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 871-892, 2024, DOI:10.32604/cmes.2024.052830 - 20 August 2024

    Abstract Driven piles are used in many geological environments as a practical and convenient structural component. Hence, the determination of the drivability of piles is actually of great importance in complex geotechnical applications. Conventional methods of predicting pile drivability often rely on simplified physical models or empirical formulas, which may lack accuracy or applicability in complex geological conditions. Therefore, this study presents a practical machine learning approach, namely a Random Forest (RF) optimized by Bayesian Optimization (BO) and Particle Swarm Optimization (PSO), which not only enhances prediction accuracy but also better adapts to varying geological environments… More > Graphic Abstract

    Determination of the Pile Drivability Using Random Forest Optimized by Particle Swarm Optimization and Bayesian Optimizer

  • Open Access

    ARTICLE

    Prediction of Ground Vibration Induced by Rock Blasting Based on Optimized Support Vector Regression Models

    Yifan Huang1, Zikang Zhou1,2, Mingyu Li1, Xuedong Luo1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3147-3165, 2024, DOI:10.32604/cmes.2024.045947 - 11 March 2024

    Abstract Accurately estimating blasting vibration during rock blasting is the foundation of blasting vibration management. In this study, Tuna Swarm Optimization (TSO), Whale Optimization Algorithm (WOA), and Cuckoo Search (CS) were used to optimize two hyperparameters in support vector regression (SVR). Based on these methods, three hybrid models to predict peak particle velocity (PPV) for bench blasting were developed. Eighty-eight samples were collected to establish the PPV database, eight initial blasting parameters were chosen as input parameters for the prediction model, and the PPV was the output parameter. As predictive performance evaluation indicators, the coefficient of More >

  • Open Access

    ARTICLE

    PoIR: A Node Selection Mechanism in Reputation-Based Blockchain Consensus Using Bidirectional LSTM Regression Model

    Jauzak Hussaini Windiatmaja, Delphi Hanggoro, Muhammad Salman, Riri Fitri Sari*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2309-2339, 2023, DOI:10.32604/cmc.2023.041152 - 29 November 2023

    Abstract This research presents a reputation-based blockchain consensus mechanism called Proof of Intelligent Reputation (PoIR) as an alternative to traditional Proof of Work (PoW). PoIR addresses the limitations of existing reputation-based consensus mechanisms by proposing a more decentralized and fair node selection process. The proposed PoIR consensus combines Bidirectional Long Short-Term Memory (BiLSTM) with the Network Entity Reputation Database (NERD) to generate reputation scores for network entities and select authoritative nodes. NERD records network entity profiles based on various sources, i.e., Warden, Blacklists, DShield, AlienVault Open Threat Exchange (OTX), and MISP (Malware Information Sharing Platform). It… More >

  • Open Access

    ARTICLE

    Quantum Fuzzy Regression Model for Uncertain Environment

    Tiansu Chen1,2, Shi bin Zhang1,2, Qirun Wang3, Yan Chang1,2,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2759-2773, 2023, DOI:10.32604/cmc.2023.033284 - 31 March 2023

    Abstract In the era of big data, traditional regression models cannot deal with uncertain big data efficiently and accurately. In order to make up for this deficiency, this paper proposes a quantum fuzzy regression model, which uses fuzzy theory to describe the uncertainty in big data sets and uses quantum computing to exponentially improve the efficiency of data set preprocessing and parameter estimation. In this paper, data envelopment analysis (DEA) is used to calculate the degree of importance of each data point. Meanwhile, Harrow, Hassidim and Lloyd (HHL) algorithm and quantum swap circuits are used to… More >

  • Open Access

    ARTICLE

    A Three-Dimensional Real-Time Gait-Based Age Detection System Using Machine Learning

    Muhammad Azhar1,*, Sehat Ullah1, Khalil Ullah2, Habib Shah3, Abdallah Namoun4, Khaliq Ur Rahman5

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 165-182, 2023, DOI:10.32604/cmc.2023.034605 - 06 February 2023

    Abstract Human biometric analysis has gotten much attention due to its widespread use in different research areas, such as security, surveillance, health, human identification, and classification. Human gait is one of the key human traits that can identify and classify humans based on their age, gender, and ethnicity. Different approaches have been proposed for the estimation of human age based on gait so far. However, challenges are there, for which an efficient, low-cost technique or algorithm is needed. In this paper, we propose a three-dimensional real-time gait-based age detection system using a machine learning approach. The… More >

  • Open Access

    ARTICLE

    Experimental Analysis of Methods Used to Solve Linear Regression Models

    Mua’ad Abu-Faraj1,*, Abeer Al-Hyari2, Ziad Alqadi3

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5699-5712, 2022, DOI:10.32604/cmc.2022.027364 - 21 April 2022

    Abstract Predicting the value of one or more variables using the values of other variables is a very important process in the various engineering experiments that include large data that are difficult to obtain using different measurement processes. Regression is one of the most important types of supervised machine learning, in which labeled data is used to build a prediction model, regression can be classified into three different categories: linear, polynomial, and logistic. In this research paper, different methods will be implemented to solve the linear regression problem, where there is a linear relationship between the… More >

  • Open Access

    ARTICLE

    Safety Analysis of Riding at Intersection Entrance Using Video Recognition Technology

    Xingjian Xue1,*, Linjuan Ge2, Longxin Zeng2, Weiran Li2, Rui Song2, Neal N. Xiong3

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5135-5148, 2022, DOI:10.32604/cmc.2022.027356 - 21 April 2022

    Abstract To study riding safety at intersection entrance, video recognition technology is used to build vehicle-bicycle conflict models based on the Bayesian method. It is analyzed the relationship among the width of non-motorized lanes at the entrance lane of the intersection, the vehicle-bicycle soft isolation form of the entrance lane of intersection, the traffic volume of right-turning motor vehicles and straight-going non-motor vehicles, the speed of right-turning motor vehicles, and straight-going non-motor vehicles, and the conflict between right-turning motor vehicles and straight-going non-motor vehicles. Due to the traditional statistical methods, to overcome the discreteness of vehicle-bicycle… More >

  • Open Access

    ARTICLE

    Robust Prediction of the Bandwidth of Metamaterial Antenna Using Deep Learning

    Abdelaziz A. Abdelhamid1,3,*, Sultan R. Alotaibi2

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2305-2321, 2022, DOI:10.32604/cmc.2022.025739 - 29 March 2022

    Abstract The design of microstrip antennas is a complex and time-consuming process, especially the step of searching for the best design parameters. Meanwhile, the performance of microstrip antennas can be improved using metamaterial, which results in a new class of antennas called metamaterial antenna. Several parameters affect the radiation loss and quality factor of this class of antennas, such as the antenna size. Recently, the optimal values of the design parameters of metamaterial antennas can be predicted using machine learning, which presents a better alternative to simulation tools and trial-and-error processes. However, the prediction accuracy depends… More >

  • Open Access

    ARTICLE

    Comparative Study on Deformation Prediction Models of Wuqiangxi Concrete Gravity Dam Based on Monitoring Data

    Songlin Yang1,2, Xingjin Han1,2, Chufeng Kuang1,2, Weihua Fang3, Jianfei Zhang4, Tiantang Yu4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 49-72, 2022, DOI:10.32604/cmes.2022.018325 - 24 January 2022

    Abstract The deformation prediction models of Wuqiangxi concrete gravity dam are developed, including two statistical models and a deep learning model. In the statistical models, the reliable monitoring data are firstly determined with Lahitte criterion; then, the stepwise regression and partial least squares regression models for deformation prediction of concrete gravity dam are constructed in terms of the reliable monitoring data, and the factors of water pressure, temperature and time effect are considered in the models; finally, according to the monitoring data from 2006 to 2020 of five typical measuring points including J23 (on dam section ),… More >

  • Open Access

    ARTICLE

    Characterization and Prediction of Nonlinear Stress-Strain Relation of Geostructures for Seismic Monitoring

    Abdoullah Namdar1,2,3,*

    Structural Durability & Health Monitoring, Vol.15, No.2, pp. 167-182, 2021, DOI:10.32604/sdhm.2021.011127 - 03 June 2021

    Abstract The nonlinearity of the strain energy at an interval period of applying seismic load on the geostructures makes it difficult for a seismic designer to makes appropriate engineering judgments timely. The nonlinear stress and strain analysis of an embankment is needed to evaluate by using a combination of suitable methods. In this study, a large-scale geostructure was seismically simulated and analyzed using the nonlinear finite element method (NFEM), and linear regression method which is a soft computing technique (SC) was applied for evaluating the results of NFEM, and it supports engineering judgment because the design… More >

Displaying 1-10 on page 1 of 17. Per Page