Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (204)
  • Open Access

    ARTICLE

    Gaussian Process Regression-Based Optimization of Fan-Shaped Film Cooling Holes on Concave Walls

    Yanzhao Yang1, Xiaowen Song2, Zhiying Deng2,*, Jianyang Yu3

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.074345 - 06 February 2026

    Abstract In this study, a Gaussian Process Regression (GPR) surrogate model coupled with a Bayesian optimization algorithm was employed for the single-objective design optimization of fan-shaped film cooling holes on a concave wall. Fan-shaped holes, commonly used in gas turbines and aerospace applications, flare toward the exit to form a protective cooling film over hot surfaces, enhancing thermal protection compared to cylindrical holes. An initial hole configuration was used to improve adiabatic cooling efficiency. Design variables included the hole injection angle, forward expansion angle, lateral expansion angle, and aperture ratio, while the objective function was the More >

  • Open Access

    ARTICLE

    Two Eras of Despair: A Long-Term Trend Analysis of Deaths of Despair in Central and Eastern Europe and Central Asia

    Eun Hae Lee1,2,3, Minjae Choi4,5, Hanul Park3,6, Joon Hee Han3,6,7, Sujeong Yu3,8, Joshua Kirabo Sempungu1,2,3,6, Inbae Sohn4,6, Yo Han Lee3,6,*

    International Journal of Mental Health Promotion, Vol.28, No.1, 2026, DOI:10.32604/ijmhp.2025.073735 - 28 January 2026

    Abstract Background: That Central and Eastern Europe and Central Asia (CEECA) experienced a major mortality crisis in the 1990s is a well-established finding, with most analyses focusing on singular causes like alcohol-related deaths. However, the utility of the integrated “deaths of despair” framework, which views alcohol, drug, and suicide deaths as a unified socio-economic phenomenon, remains under-explored in this context. Crucially, the long-term evolution of the composition of despair within the region remains a largely unexplored area of inquiry. Therefore, this study aims to analyze the long-term trends, changing composition, and regional heterogeneity of deaths from despair… More >

  • Open Access

    ARTICLE

    Algorithmically Enhanced Data-Driven Prediction of Shear Strength for Concrete-Filled Steel Tubes

    Shengkang Zhang1, Yong Jin2,*, Soon Poh Yap1,*, Haoyun Fan1, Shiyuan Li3, Ahmed El-Shafie4, Zainah Ibrahim1, Amr El-Dieb5

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075351 - 29 January 2026

    Abstract Concrete-filled steel tubes (CFST) are widely utilized in civil engineering due to their superior load-bearing capacity, ductility, and seismic resistance. However, existing design codes, such as AISC and Eurocode 4, tend to be excessively conservative as they fail to account for the composite action between the steel tube and the concrete core. To address this limitation, this study proposes a hybrid model that integrates XGBoost with the Pied Kingfisher Optimizer (PKO), a nature-inspired algorithm, to enhance the accuracy of shear strength prediction for CFST columns. Additionally, quantile regression is employed to construct prediction intervals for… More >

  • Open Access

    ARTICLE

    EventTracker Based Regression Prediction with Application to Composite Sensitive Microsensor Parameter Prediction

    Hongrong Wang1,2, Xinjian Li3,4, Xingjing She1, Wenjian Ma1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2039-2055, 2025, DOI:10.32604/cmes.2025.072572 - 26 November 2025

    Abstract In modern complex systems, real-time regression prediction plays a vital role in performance evaluation and risk warning. Nevertheless, existing methods still face challenges in maintaining stability and predictive accuracy under complex conditions. To address these limitations, this study proposes an online prediction approach that integrates event tracking sensitivity analysis with machine learning. Specifically, a real-time event tracking sensitivity analysis method is employed to capture and quantify the impact of key events on system outputs. On this basis, a mutual-information–based self-extraction mechanism is introduced to construct prior weights, which are then incorporated into a LightGBM prediction More >

  • Open Access

    ARTICLE

    Using Hate Speech Detection Techniques to Prevent Violence and Foster Community Safety

    Ayaz Hussain1, Asad Hayat2, Muhammad Hasnain1,*

    Journal on Artificial Intelligence, Vol.7, pp. 485-498, 2025, DOI:10.32604/jai.2025.071933 - 17 November 2025

    Abstract Violent hate speech and scapegoating people against one another have emerged as a rising worldwide issue. But identifying and combating such content is crucial to create safer and more inclusive societies. The current study conducted research using Machine Learning models to classify hate speech and overcome the limitations posed in the existing detection techniques. Logistic Regression (LR), Random Forest (RF), K-Nearest Neighbour (KNN) and Decision Tree were used on top of a publicly available hate speech dataset. The data was preprocessed by cleaning the text and tokenization and using normalization techniques to efficiently train the… More >

  • Open Access

    ARTICLE

    Associations of systemic immune-inflammation index, product of platelet, and neutrophil count, with the pathological grade of bladder cancer

    Lihao Zhang1,2, Lin Cao1,2, Lige Huang1,2, Jie Wang1,2, Jiabing Li2,3,*

    Canadian Journal of Urology, Vol.32, No.5, pp. 457-468, 2025, DOI:10.32604/cju.2025.067364 - 30 October 2025

    Abstract Background: Studies have indicated an association between inflammatory factors (IFs) in the blood and the development of bladder cancer (BC). This study aimed to explore the correlation and clinical significance of IFs with the pathological grading of BC. Methods: A retrospective analysis was conducted on the preoperative blood routine results, postoperative pathological findings, and baseline information of 163 patients. Patients were divided into high-grade and low-grade groups based on pathological grading. Group comparisons and logistic regression analyses were performed using R software version 4.1.3 to explore the relationships between IFs and BC pathological grading. Results: The… More >

  • Open Access

    ARTICLE

    Heat Transfer Analysis of Temperature-Sensitive Ternary Nanofluid in MHD and Porous Media Flow: Influence of Volume Fraction and Shape

    Barkilean Jaismitha1, Jagadeesan Sasikumar2,*, Samad Noeiaghdam3,*, Unai Fernandez-Gamiz4, Thirugnanasambandam Arunkumar1

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1529-1554, 2025, DOI:10.32604/fhmt.2025.067869 - 31 October 2025

    Abstract The present study investigates the dynamic behavior of a ternary-hybrid nanofluid within a tapered asymmetric channel, focusing on the impact of unsteady oscillatory flow under the influence of a magnetic field. This study addresses temperature-sensitive water transport mechanisms relevant to industrial applications such as thermal management and energy-efficient fluid transport. By suspending nanoparticles of diverse shapes-platelets, blades, and spheres in a hybrid base fluid comprising cobalt ferrite, magnesium oxide, and graphene oxide, the study examines the influence of both small and large volume fraction values. The governing equations are converted into a dimensionless form. With More >

  • Open Access

    ARTICLE

    An Intelligent Zero Trust Architecture Model for Mitigating Authentication Threats and Vulnerabilities in Cloud-Based Services

    Victor Otieno Mony*, Anselemo Peters Ikoha, Roselida O. Maroko

    Journal of Cyber Security, Vol.7, pp. 395-415, 2025, DOI:10.32604/jcs.2025.070952 - 30 September 2025

    Abstract The widespread adoption of Cloud-Based Services has significantly increased the surface area for cyber threats, particularly targeting authentication mechanisms, which remain among the most vulnerable components of cloud security. This study aimed to address these challenges by developing and evaluating an Intelligent Zero Trust Architecture model tailored to mitigate authentication-related threats in Cloud-Based Services environments. Data was sourced from public repositories, including Kaggle and the National Institute for Standards and Technology MITRE Corporation’s Adversarial Tactics, Techniques, & Common Knowledge (ATT&CK) framework. The study utilized two trust signals: Behavioral targeting system users and Contextual targeting system… More >

  • Open Access

    ARTICLE

    Prediction and Sensitivity Analysis of Foam Concrete Compressive Strength Based on Machine Learning Techniques with Hyperparameter Optimization

    Sen Yang1, Jie Zhong1, Boyu Gan1, Yi Sun1, Changming Bu1, Mingtao Zhang1, Jiehong Li1,*, Yang Yu1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 2943-2967, 2025, DOI:10.32604/cmes.2025.067282 - 30 September 2025

    Abstract Foam concrete is widely used in engineering due to its lightweight and high porosity. Its compressive strength, a key performance indicator, is influenced by multiple factors, showing nonlinear variation. As compressive strength tests for foam concrete take a long time, a fast and accurate prediction method is needed. In recent years, machine learning has become a powerful tool for predicting the compressive strength of cement-based materials. However, existing studies often use a limited number of input parameters, and the prediction accuracy of machine learning models under the influence of multiple parameters and nonlinearity remains unclear.… More >

  • Open Access

    ARTICLE

    Intelligent Estimation of ESR and C in AECs for Buck Converters Using Signal Processing and ML Regression

    Acácio M. R. Amaral1,2,*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3825-3859, 2025, DOI:10.32604/cmc.2025.067179 - 23 September 2025

    Abstract Power converters are essential components in modern life, being widely used in industry, automation, transportation, and household appliances. In many critical applications, their failure can lead not only to financial losses due to operational downtime but also to serious risks to human safety. The capacitors forming the output filter, typically aluminum electrolytic capacitors (AECs), are among the most critical and susceptible components in power converters. The electrolyte in AECs often evaporates over time, causing the internal resistance to rise and the capacitance to drop, ultimately leading to component failure. Detecting this fault requires measuring the… More >

Displaying 1-10 on page 1 of 204. Per Page