Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    A Region-Aware Deep Learning Model for Dual-Subject Gait Recognition in Occluded Surveillance Scenarios

    Zeeshan Ali1, Jihoon Moon2, Saira Gillani3, Sitara Afzal4, Maryam Bukhari5, Seungmin Rho6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2263-2286, 2025, DOI:10.32604/cmes.2025.067743 - 31 August 2025

    Abstract Surveillance systems can take various forms, but gait-based surveillance is emerging as a powerful approach due to its ability to identify individuals without requiring their cooperation. In the existing studies, several approaches have been suggested for gait recognition; nevertheless, the performance of existing systems is often degraded in real-world conditions due to covariate factors such as occlusions, clothing changes, walking speed, and varying camera viewpoints. Furthermore, most existing research focuses on single-person gait recognition; however, counting, tracking, detecting, and recognizing individuals in dual-subject settings with occlusions remains a challenging task. Therefore, this research proposed a… More >

  • Open Access

    ARTICLE

    Integrating Attention Mechanisms in YOLOv8 for Improved Fall Detection Performance

    Nizar Zaghden1, Emad Ibrahim2, Mukaram Safaldin2,*, Mahmoud Mejdoub3

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 1117-1147, 2025, DOI:10.32604/cmc.2025.061948 - 26 March 2025

    Abstract The increasing elderly population has heightened the need for accurate and reliable fall detection systems, as falls can lead to severe health complications. Existing systems often suffer from high false positive and false negative rates due to insufficient training data and suboptimal detection techniques. This study introduces an advanced fall detection model integrating YOLOv8, Faster R-CNN, and Generative Adversarial Networks (GANs) to enhance accuracy and robustness. A modified YOLOv8 architecture serves as the core, utilizing spatial attention mechanisms to improve critical image regions’ detection. Faster R-CNN is employed for fine-grained human posture analysis, while GANs… More >

  • Open Access

    ARTICLE

    An Improved Encoder-Decoder CNN with Region-Based Filtering for Vibrant Colorization

    Mrityunjoy Gain1, Md Arifur Rahman1, Rameswar Debnath1, Mrim M. Alnfiai2, Abdullah Sheikh3, Mehedi Masud3, Anupam Kumar Bairagi1,*

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 1059-1077, 2023, DOI:10.32604/csse.2023.034809 - 20 January 2023

    Abstract Colorization is the practice of adding appropriate chromatic values to monochrome photographs or videos. A real-valued luminance image can be mapped to a three-dimensional color image. However, it is a severely ill-defined problem and not has a single solution. In this paper, an encoder-decoder Convolutional Neural Network (CNN) model is used for colorizing gray images where the encoder is a Densely Connected Convolutional Network (DenseNet) and the decoder is a conventional CNN. The DenseNet extracts image features from gray images and the conventional CNN outputs a * b * color channels. Due to a large number of desaturated… More >

  • Open Access

    ARTICLE

    AI Cannot Understand Memes: Experiments with OCR and Facial Emotions

    Ishaani Priyadarshini*, Chase Cotton

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 781-800, 2022, DOI:10.32604/cmc.2022.019284 - 07 September 2021

    Abstract

    The increasing capabilities of Artificial Intelligence (AI), has led researchers and visionaries to think in the direction of machines outperforming humans by gaining intelligence equal to or greater than humans, which may not always have a positive impact on the society. AI gone rogue, and Technological Singularity are major concerns in academia as well as the industry. It is necessary to identify the limitations of machines and analyze their incompetence, which could draw a line between human and machine intelligence. Internet memes are an amalgam of pictures, videos, underlying messages, ideas, sentiments, humor, and experiences,

    More >

  • Open Access

    ARTICLE

    Small Object Detection via Precise Region-Based Fully Convolutional Networks

    Dengyong Zhang1,2, Jiawei Hu1,2, Feng Li1,2,*, Xiangling Ding3, Arun Kumar Sangaiah4, Victor S. Sheng5

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 1503-1517, 2021, DOI:10.32604/cmc.2021.017089 - 21 July 2021

    Abstract In the past several years, remarkable achievements have been made in the field of object detection. Although performance is generally improving, the accuracy of small object detection remains low compared with that of large object detection. In addition, localization misalignment issues are common for small objects, as seen in GoogLeNets and residual networks (ResNets). To address this problem, we propose an improved region-based fully convolutional network (R-FCN). The presented technique improves detection accuracy and eliminates localization misalignment by replacing position-sensitive region of interest (PS-RoI) pooling with position-sensitive precise region of interest (PS-Pr-RoI) pooling, which avoids More >

  • Open Access

    ARTICLE

    Ozone Depletion Identification in Stratosphere Through Faster Region-Based Convolutional Neural Network

    Bakhtawar Aslam1, Ziyad Awadh Alrowaili2, Bushra Khaliq1, Jaweria Manzoor1, Saira Raqeeb1, Fahad Ahmad3,*

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 2159-2178, 2021, DOI:10.32604/cmc.2021.015922 - 13 April 2021

    Abstract The concept of classification through deep learning is to build a model that skillfully separates closely-related images dataset into different classes because of diminutive but continuous variations that took place in physical systems over time and effect substantially. This study has made ozone depletion identification through classification using Faster Region-Based Convolutional Neural Network (F-RCNN). The main advantage of F-RCNN is to accumulate the bounding boxes on images to differentiate the depleted and non-depleted regions. Furthermore, image classification’s primary goal is to accurately predict each minutely varied case’s targeted classes in the dataset based on ozone… More >

  • Open Access

    ARTICLE

    Toward the Optimization of the Region-Based P300 Speller

    A. Benabid Najjar1,*, N. AlSahly2, R. AlShamass1, M. Hosny2

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 1169-1189, 2021, DOI:10.32604/cmc.2021.014140 - 12 January 2021

    Abstract Technology has tremendously contributed to improving communication and facilitating daily activities. Brain-Computer Interface (BCI) study particularly emerged from the need to serve people with disabilities such as Amyotrophic Lateral Sclerosis (ALS). However, with the advancements in cost-effective electronics and computer interface equipment, the BCI study is flourishing, and the exploration of BCI applications for people without disabilities, to enhance normal functioning, is increasing. Particularly, the P300-based spellers are among the most promising applications of the BCI technology. In this context, the region-based paradigm for P300 BCI spellers was introduced in an effort to reduce the… More >

Displaying 1-10 on page 1 of 7. Per Page