Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Wave Reflection by Rectangular Breakwaters for Coastal Protection

    Hasna Akarni*, Hamza Mabchour, Laila El Aarabi, Soumia Mordane

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 579-593, 2024, DOI:10.32604/fdmp.2023.043080 - 12 January 2024

    Abstract In this study, we focus on the numerical modelling of the interaction between waves and submerged structures in the presence of a uniform flow current. Both the same and opposite senses of wave propagation are considered. The main objective is an understanding of the effect of the current and various geometrical parameters on the reflection coefficient. The wave used in the study is based on potential theory, and the submerged structures consist of two rectangular breakwaters positioned at a fixed distance from each other and attached to the bottom of a wave flume. The numerical More >

  • Open Access

    ARTICLE

    Predicting the Reflection Coefficient of a Viscoelastic Coating Containing a Cylindrical Cavity Based on an Artificial Neural Network Model

    Yiping Sun1,2, Qiang Bai1, Xuefeng Zhao1, Meng Tao1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.2, pp. 1149-1170, 2022, DOI:10.32604/cmes.2022.017760 - 13 December 2021

    Abstract A cavity viscoelastic structure has a good sound absorption performance and is often used as a reflective baffle or sound absorption cover in underwater acoustic structures. The acoustic performance field has become a key research direction worldwide. Because of the time-consuming shortcomings of the traditional numerical analysis method and the high cost of the experimental method for measuring the reflection coefficient to evaluate the acoustic performance of coatings, this innovative study predicted the reflection coefficient of a viscoelastic coating containing a cylindrical cavity based on an artificial neural network (ANN). First, the mapping relationship between… More >

  • Open Access

    ARTICLE

    A Discrete Model for the High Frequency Elastic Wave Examination on Biological Tissue

    Jun Liu1, Mauro Ferrari1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.3&4, pp. 421-430, 2003, DOI:10.3970/cmes.2003.004.421

    Abstract A microstructure-accounting mechanical field theory approach is applied to the problem of reflection from a granular thin layer embedded between two solid substrates to study the direct relationship of the micro-structural parameters and the overall reflection coefficients of the thin layer. The exact solution for plane wave reflection coefficients is derived under the new theoretical framework giving quantitative relations between the macroscopic reflection coefficients and a set of micro structural/physical parameters including particle size and micromoduli. The model was analyzed using averaged material properties of biological tissue for the granular thin layer. It was demonstrated More >

Displaying 1-10 on page 1 of 3. Per Page