Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    PROCEEDINGS

    Aerothermoelasticity Research of Hypersonic TPS Panel using Kriging Surrogate Reduced Order Model

    Zijun Yi1, Dan Xie2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012704

    Abstract Hypersonic aircraft face complex aerodynamic forces and severe aerothermal issues. While aerodynamic and aerothermal empirical solutions exhibit high computational efficiency, they lack precision. Numerical approaches equipped with accuracy but come with high computational costs. To address the contradiction between precision and efficiency, some research on hypersonic unsteady aerodynamic and aerothermal Reduced Order Models (ROMs) was conducted in this study, using Kriging surrogate method.
    Meanwhile, hypersonic aircraft typically feature numerous thin-wall structures. The strong coupling of aerodynamic, aerothermal, and elasticity will inevitably lead to aerothermoelastic effects. This study centered on the Thermal Protection System (TPS) panel… More >

  • Open Access

    PROCEEDINGS

    Reduced Order Model based on SPOD for Aerothermoelastic Analysis of a Hypersonic Panel

    Chunxiu Ji1, Dan Xie1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.24, No.1, pp. 1-2, 2022, DOI:10.32604/icces.2022.08737

    Abstract This study has established a reduced order model (ROM) based on spectral proper orthogonal decomposition (SPOD) method in order to proceed an aerothermoelastic response analysis of a hypersonic panel. The two-way coupling between aerothermal and aeroelastic systems is applied [1]. Three aspects of POD-ROM are investigated: 1) the selection of snapshots for POD modes; 2) the comparison between classical POD [2] and SPOD [3]; 3) how to find global POD modes in a parameter space of flight altitude and Mach number. The snapshots are sampled from aerothermoelastic response data via the classical Galerkin method. The… More >

  • Open Access

    ARTICLE

    A Numerical Study on Hydraulic Fracturing Problems via the Proper Generalized Decomposition Method

    Daobing Wang1, *, Sergio Zlotnik2, *, Pedro Díez2, Hongkui Ge3, Fujian Zhou3, Bo Yu4

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.2, pp. 703-720, 2020, DOI:10.32604/cmes.2020.08033 - 01 February 2020

    Abstract The hydraulic fracturing is a nonlinear, fluid-solid coupling and transient problem, in most cases it is always time-consuming to simulate this process numerically. In recent years, although many numerical methods were proposed to settle this problem, most of them still require a large amount of computer resources. Thus it is a high demand to develop more effificient numerical approaches to achieve the real-time monitoring of the fracture geometry during the hydraulic fracturing treatment. In this study, a reduced order modeling technique namely Proper Generalized Decomposition (PGD), is applied to accelerate the simulations of the transient,… More >

  • Open Access

    ABSTRACT

    A Reduced Order Model for the Fast Predictions of Reactivity and Neutron Distributions within Reactor Cores

    Andrew Buchan1, Simon Jewer2, Ionel Michael Navon3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.4, pp. 179-179, 2019, DOI:10.32604/icces.2019.05396

    Abstract A new Reduced Order Model (ROM) is developed for solving the neutron eigenvalue problem for the fast and accurate prediction and simulation of the neutron flux within light water reactor cores. The method of Proper Orthogonal Decomposition is employed to form the ROM which uses snapshots obtained from a full order model based on the finite element discretisation of the spatial dependence of the multi-group neutron diffusion equation. We detail how the temperature variation and control rod adjustments can be efficiently integrated into the model and their influence then accurately predicted within the model's solution.… More >

  • Open Access

    ARTICLE

    ANALYSIS OF CHAOTIC NATURAL CONVECTION IN A TALL RECTANGULAR CAVITY WITH NON-ISOTHERMAL WALLS

    Heather Dillona , Ashley Emeryb,† , Ann Mescherb

    Frontiers in Heat and Mass Transfer, Vol.4, No.2, pp. 1-9, 2013, DOI:10.5098/hmt.v4.2.3004

    Abstract A computational model is presented that extends prior work on unsteady natural convection in a tall rectangular cavity with aspect ratio 10 and applies Proper Orthogonal Decomposition to the results. The solution to the weakly compressible Navier-Stokes equation is computed for a range of Rayleigh numbers between 2 × 107 and 2.2 × 108 with Prandtl number 0.71. A detailed spectral analysis shows dynamic system behavior beyond the Hopf bifurcation that was not previously observed. The wider Rayleigh range reveals new dynamic system behavior for the rectangular geometry, specifically a return to a stable oscillatory behavior More >

  • Open Access

    ARTICLE

    A Simple Proper Orthogonal Decomposition Method for von Karman Plate undergoing Supersonic Flow

    Dan Xie1, Min Xu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.93, No.5, pp. 377-409, 2013, DOI:10.3970/cmes.2013.093.377

    Abstract We apply a simple proper orthogonal decomposition (POD) method to compute the nonlinear oscillations of a degenerate two-dimensional fluttering plate undergoing supersonic flow. First, the von Karman’s large deflection theory and quasi-steady aerodynamic theory are employed in constructing the governing equations of the simply supported plate. Then, the governing equations are solved by both the Galerkin method and the POD method. The Galerkin method is accurate but sometimes computationally expensive, since the number of degrees of freedom (dofs) required is relatively large provided that nonlinearity is strong. The POD method can be used to capture… More >

  • Open Access

    ARTICLE

    Multi–Disciplinary Optimization for the Conceptual Design of Innovative Aircraft Configurations

    Luigi Morino1, Giovanni Bernardini1, Franco Mastroddi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.13, No.1, pp. 1-18, 2006, DOI:10.3970/cmes.2006.013.001

    Abstract The paper presents an overview of recent work by the authors and their collaborators on multi--disciplinary optimization for conceptual design, based on the integrated modeling of structures, aerodynamics, and aeroelasticity. The motivation for the work is the design of innovative aircraft configurations, and is therefore first--principles based, since in this case the designer cannot rely upon past experience. The algorithms used and the philosophy behind the choices are discussed. More >

Displaying 1-10 on page 1 of 7. Per Page