Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Toward Analytical Homogenized Relaxation Modulus for Fibrous Composite Material with Reduced Order Homogenization Method

    Huilin Jia1, Shanqiao Huang1, Zifeng Yuan1,2,*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 193-222, 2025, DOI:10.32604/cmc.2024.059950 - 03 January 2025

    Abstract In this manuscript, we propose an analytical equivalent linear viscoelastic constitutive model for fiber-reinforced composites, bypassing general computational homogenization. The method is based on the reduced-order homogenization (ROH) approach. The ROH method typically involves solving multiple finite element problems under periodic conditions to evaluate elastic strain and eigenstrain influence functions in an ‘off-line’ stage, which offers substantial cost savings compared to direct computational homogenization methods. Due to the unique structure of the fibrous unit cell, “off-line” stage calculation can be eliminated by influence functions obtained analytically. Introducing the standard solid model to the ROH method More >

  • Open Access

    ARTICLE

    Corotational Formulation of Reduced Order Homogenization

    V. Filonova1, Y. Liu1, M. Bailakanavar1, J. Fish1, Z. Yuan2

    CMC-Computers, Materials & Continua, Vol.34, No.3, pp. 177-198, 2013, DOI:10.3970/cmc.2013.034.177

    Abstract A corotational formulation for reduced order homogenization is presented. While in principle the proposed method is valid for problems with arbitrary large strains, it is computational advantageous over the classical direct computational homogenization method for large rotations but moderate unit cell distortions. We validate the method for several large deformation problems including: (i) hat-section composite beam with two-dimensional chopped tow composite architecture, (ii) polyethylene microstructure consisting of 'hard' and 'soft' domains (segments), and (iii) fiber framework called fiberform either embedded or not in an amorphous matrix. More >

Displaying 1-10 on page 1 of 2. Per Page