Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Advanced Nanocomposite Arabic Gum Polyacrylic Acid Hydrogels for Flexible Supercapacitors

    Borhan Albiss*, Asala Saleh

    Journal of Renewable Materials, Vol.12, No.7, pp. 1219-1236, 2024, DOI:10.32604/jrm.2024.050685

    Abstract In this work, the fabrication and characterization of the nanocomposite hydrogel, as a solid electrode in electrochemical cell and gel electrolyte material using Indium titanium oxide/polyethylene terephthalate (ITO/PET) flexible substrate for double-layer supercapacitors have been reported. The nanocomposite hydrogel composed of Arabic gum (AG), Acrylic acid (AA), reduced graphene oxide (RGO), and silver nanoparticles (AgNPs) was fabricated via a physical cross-linked polymerization reaction, in which the ascorbic acid was used as a reducing agent to generate AgNPs and to convert Graphene oxide (GO) to RGO during the polymerization reaction. The morphology and structural characteristics of… More > Graphic Abstract

    Advanced Nanocomposite Arabic Gum Polyacrylic Acid Hydrogels for Flexible Supercapacitors

  • Open Access

    ARTICLE

    Green Synthesis of Reduced Graphene Oxide Nanosheet by using L-ascorbic Acid and Study of its Cytotoxicity on Human Cervical Cancer Cell Line

    PRABHAT KUMAR, ANJANA SARKAR, PURNIMA JAIN*

    Journal of Polymer Materials, Vol.39, No.1-2, pp. 121-135, 2022, DOI:10.32381/JPM.2022.39.1-2.8

    Abstract Biocompatible graphene derivative materials (GBMs) to harness the maximum potential of pristine graphene biologically, is the most important strategy for its advanced applications in pharmaceutical and other biomedical fields. Currently, scientists are trying to find this by using biopolymer nanocomposites or anchored materials. Nevertheless, tuning the bare GBMs towards biocompatibility is a beautiful approach to exploit the fundamental potential of pristine graphene vis-à-vis suppressing the effects of incorporated biopolymers or anchored materials. Herein, a large-scale, cost-effective, facile, and environment-friendly green synthetic strategy is used for the synthesis of reduced graphene oxide (rGO) nanosheet using L-ascorbic… More >

  • Open Access

    ARTICLE

    The Bacteria Absorption-based Yolk-Shell Ni3P-Carbon @ Reduced Graphene Oxides for Lithium-Ion Batteries

    Yuhua Yang1,2, Ke Xu1, Bo Zhao1, Nana Liu1, Jun Zhou3,4,*

    Journal of Renewable Materials, Vol.9, No.5, pp. 855-865, 2021, DOI:10.32604/jrm.2021.014525

    Abstract Traditional carbon layer enwrapping active materials cannot easily realize perfect cladding. Therefore, it still cannot prevent the pulverization of active materials during the course of charging/discharging. In this paper, we utilize natural bacteria to absorb nickel acetate, the active materials Ni3P nanoparticles are well enwrapped, as a natural organisms surviving for billions of years, their cell walls have a perfect carbon structure, and the cell walls become carbon layer through high annealing temperature. Based on this, the yolk-shell Ni3P–carbon @ reduced graphene oxides paper is prepared, through a proper annealing temperature, the Ni3P particles disperse in the… More >

  • Open Access

    ARTICLE

    Sunflower-Like SrCo2S4@f-MWCNTs Hybrid Wrapped by Engineering N-Reduced Graphene Oxide for High Performance Dye-Sensitized Solar Cells

    Weiming Zhang1, Muhammad Wasim Khan1, Xueqin Zuo1, Qun Yang1, Huaibao Tang1,2, Shaowei Jin1,2, Guang Li1,2,3,*

    Journal of Renewable Materials, Vol.8, No.4, pp. 431-446, 2020, DOI:10.32604/jrm.2020.09158

    Abstract A novel sunflower-like nanocomposite of SrCo2S4 nanoflakes and functionalized multiwall carbon nanotubes (f-MWCNTs) entanglement enveloped in nitrogen-reduced graphene oxide (N-RGO) is prepared by a cheap process. The unique entanglement structure of the material exhibits higher specific surface area, better electrical conductivity and other properties. This helps to reduce the transfer resistance in the photoelectric process of the battery and improve the electrochemical activity, thus increasing the photoelectric conversion efficiency of the battery. The new ternary cobalt-based sulfide material can replace platinum as the counter electrode (CE) material loaded on dye-sensitized solar cells (DSSCs). DSSCs with SrCo2S4@f-MWCNTs@N-RGO More >

Displaying 1-10 on page 1 of 4. Per Page