Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Dynamical Behaviors of Nonlinear Coronavirus (COVID-19) Model with Numerical Studies

    Khaled A. Gepreel1,2, Mohamed S. Mohamed1,3, Hammad Alotaibi1, Amr M. S. Mahdy1,2,*

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 675-686, 2021, DOI:10.32604/cmc.2021.012200 - 12 January 2021

    Abstract The development of mathematical modeling of infectious diseases is a key research area in various fields including ecology and epidemiology. One aim of these models is to understand the dynamics of behavior in infectious diseases. For the new strain of coronavirus (COVID-19), there is no vaccine to protect people and to prevent its spread so far. Instead, control strategies associated with health care, such as social distancing, quarantine, travel restrictions, can be adopted to control the pandemic of COVID-19. This article sheds light on the dynamical behaviors of nonlinear COVID-19 models based on two methods: More >

  • Open Access

    ARTICLE

    Reduced Differential Transform Method for Solving Nonlinear Biomathematics Models

    K. A. Gepreel1,2, A. M. S. Mahdy1,2,*, M. S. Mohamed1,3, A. Al-Amiri4

    CMC-Computers, Materials & Continua, Vol.61, No.3, pp. 979-994, 2019, DOI:10.32604/cmc.2019.07701

    Abstract In this paper, we study the approximate solutions for some of nonlinear Biomathematics models via the e-epidemic SI1I2R model characterizing the spread of viruses in a computer network and SIR childhood disease model. The reduced differential transforms method (RDTM) is one of the interesting methods for finding the approximate solutions for nonlinear problems. We apply the RDTM to discuss the analytic approximate solutions to the SI1I2R model for the spread of virus HCV-subtype and SIR childhood disease model. We discuss the numerical results at some special values of parameters in the approximate solutions. We use More >

  • Open Access

    ARTICLE

    A New Coupled Fractional Reduced Differential Transform Method for the Numerical Solution of Fractional Predator-Prey System

    S. Saha Ray1

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.3, pp. 231-249, 2015, DOI:10.3970/cmes.2015.105.231

    Abstract In the present article, a relatively very new technique viz. Coupled Fractional Reduced Differential Transform, has been executed to attain the approximate numerical solution of the predator-prey dynamical system. The fractional derivatives are defined in the Caputo sense. Utilizing the present method we can solve many linear and nonlinear coupled fractional differential equations. The results thus obtained are compared with those of other available methods. Numerical solutions are presented graphically to show the simplicity and authenticity of the method. More >

  • Open Access

    ARTICLE

    Approximate Analytical Solution of Time-fractional order Cauchy-Reaction Diffusion equation

    H. S. Shukla1, Mohammad Tamsir1, Vineet K. Srivastava2, Jai Kumar3

    CMES-Computer Modeling in Engineering & Sciences, Vol.103, No.1, pp. 1-17, 2014, DOI:10.3970/cmes.2014.103.001

    Abstract The objective of this article is to carry out an approximate analytical solution of the time fractional order Cauchy-reaction diffusion equation by using a semi analytical method referred as the fractional-order reduced differential transform method (FRDTM). The fractional derivative is illustrated in the Caputo sense. The FRDTM is very efficient and effective powerful mathematical tool for solving wide range of real world physical problems by providing an exact or a closed approximate solution of any differential equation arising in engineering and allied sciences. Four test numerical examples are provided to validate and illustrate the efficiency More >

Displaying 1-10 on page 1 of 4. Per Page