Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    System Energy and Efficiency Analysis of 12.5 W VRFB with Different Flow Rates

    Kehuan Xie1, Longhai Yu2,3, Chuanchang Li1,*

    Energy Engineering, Vol.120, No.12, pp. 2903-2915, 2023, DOI:10.32604/ee.2023.027636 - 29 November 2023

    Abstract Vanadium redox flow battery (VRFB) is considered one of the most potential large-scale energy storage technologies in the future, and its electrolyte flow rate is an important factor affecting the performance of VRFB. To study the effect of electrolyte flow rate on the performance of VRFB, the hydrodynamic model is established and a VRFB system is developed. The results show that under constant current density, with the increase of electrolyte flow rate, not only the coulombic efficiency, energy efficiency, and voltage efficiency will increase, but also the capacity and energy discharged by VRFB will also More >

  • Open Access

    ARTICLE

    Effect of Flow Field Geometry on Hydrodynamics of Flow in Redox Flow Battery

    M. Narendra Kumar1,*, S. Manoj Kumar2, G. C. Vijayakumar1, K. Kadirgama3,4, M. Samykano5, Krishna Venkatesh1, H. B. Murlidhara1

    Energy Engineering, Vol.119, No.1, pp. 201-217, 2022, DOI:10.32604/EE.2022.016597 - 22 November 2021

    Abstract This study computationally investigates the hydrodynamics of different serpentine flow field designs for redox flow batteries, which considers the Poiseuille flow in the flow channel and the Darcy flow porous substrate. Computational Fluid Dynamics (CFD) results of the in-house developed code based on Finite Volume Method (FVM) for conventional serpentine flow field (CSFF) agreed well with those obtained via experiment. The deviation for pressure drop was less than 5.1% for all the flow rates, thus proving the present CFD analysis’s validity on the modified variation of serpentine flow fields. Modified serpentine flow field-2 (MSFF2) design provided More >

Displaying 1-10 on page 1 of 2. Per Page