Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    ARTICLE

    Influence of Recycled Concrete Fine Powder on Durability of Cement Mortar

    Yadong Bian1, Xuan Qiu1, Jihui Zhao2,*, Zhong Li2, Jiana Ouyang2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.1, pp. 45-58, 2024, DOI:10.32604/fdmp.2023.029299 - 08 November 2023

    Abstract In this paper, the durability of cement mortar prepared with a recycled-concrete fine powder (RFP) was examined; including the analysis of a variety of aspects, such as the carbonization, sulfate attack and chloride ion erosion resistance. The results indicate that the influence of RFP on these three aspects is different. The carbonization depth after 30 days and the chloride diffusion coefficient of mortar containing 10% RFP decreased by 13.3% and 28.19%. With a further increase in the RFP content, interconnected pores formed between the RFP particles, leading to an acceleration of the penetration rate of CO2 More > Graphic Abstract

    Influence of Recycled Concrete Fine Powder on Durability of Cement Mortar

  • Open Access

    REVIEW

    Research Progress on the Influence of Varying Fiber Contents on Mechanical Properties of Recycled Concrete

    Zhenqing Shi1, Guomin Sun1, Jianyong Pang2,*

    Structural Durability & Health Monitoring, Vol.17, No.3, pp. 239-255, 2023, DOI:10.32604/sdhm.2023.022816 - 25 June 2023

    Abstract Applying recycled concrete for engineered projects not only protects the ecological environment but also improves the utilization rate of waste concrete to satisfy sustainable development requirements. However, the mechanical properties of recycled concrete are not as good as those of ordinary concrete. To enhance the former’s performance and increase its popularity and application in engineering fields, notable advances have been made by using steel, synthetic, plant, and mineral fiber materials. These materials are added to recycled concrete to improve its mechanical properties. Studies have shown that (1) steel fibers have a distinct reinforcing effect and… More >

  • Open Access

    ARTICLE

    Evaluation of Various Modification Methods for Enhancing the Performance of Recycled Concrete Aggregate

    Xiaoyan Liu1,*, Li Liu1, Junqing Zuo2, Pingzhong Zhao1, Xian Xie1, Shijie Li1, Kai Lyu3,*, Chunying Wu4, Surendra P. Shah5

    Journal of Renewable Materials, Vol.10, No.10, pp. 2685-2698, 2022, DOI:10.32604/jrm.2022.019527 - 08 June 2022

    Abstract Due to the existence of the attached mortar, the performance of the recycled concrete aggregate (RCA) is inferior to the natural aggregate, which significantly limits its wide application in industry. In this study, five kinds of modified solutions were used to modify the surface of RCA, and the modification effects were compared. The results showed that sodium silicate, nano-silica (NS), Bacillus pasteurii and soybean powder had relatively good modification effects on RCA, which could reduce the crushing value and water absorption, and increase apparent density. The composite solution (15% sodium silicate and 2% NS) and… More >

  • Open Access

    ARTICLE

    Effect of Recycled Mixed Powder on the Mechanical Properties and Microstructure of Concrete

    Chao Liu1,2,*, Huawei Liu2,*, Jian Wu1

    Journal of Renewable Materials, Vol.10, No.5, pp. 1397-1414, 2022, DOI:10.32604/jrm.2022.018386 - 22 December 2021

    Abstract In this paper, recycled bricks and recycled concrete were applied to prepare eco-friendly recycled mixed powder (RMP) cementitious material, as a supplementary to replace conventional cement for improve the recycling of construction and demolition waste. Based on the effect of cementitious materials on the hydration of silicate cement, the effects of RMP on the workability, mechanical properties and microstructure of recycled mixed powder concrete (RMPC) with the different replacement ratios and the 8:4 and 6:4 mixing ratio of recycled brick powder (RBP) and recycled concrete powder (RCP) were investigated. The results showed that the fluidity… More >

  • Open Access

    ARTICLE

    Experimental and Numerical Analysis of High-Strength Concrete Beams Including Steel Fibers and Large-Particle Recycled Coarse Aggregates

    Chunyang Liu1,2,*, Yangyang Wu1, Yingqi Gao1, Zhenyun Tang3

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.5, pp. 947-958, 2021, DOI:10.32604/fdmp.2021.016283 - 05 July 2021

    Abstract In order to study the performances of high-strength concrete beams including steel fibers and large-particle recycled aggregates, four different beams have been designed, tested experimentally and simulated numerically. As varying parameters, the replacement rates of recycled coarse aggregates and CFRP (carbon fiber reinforced polymer) sheets have been considered. The failure mode of these beams, related load deflection curves, stirrup strain and shear capacity have been determined through monotonic loading tests. The simulations have been conducted using the ABAQUS finite element software. The results show that the shear failure mode of recycled concrete beams is similar More >

  • Open Access

    ARTICLE

    Utilization of Recycled Concrete Powder in Cement Composite: Strength, Microstructure and Hydration Characteristics

    Xi Chen1,2, Ying Li1,2,*, Hualei Bai1,2, Liyuan Ma1,2

    Journal of Renewable Materials, Vol.9, No.12, pp. 2189-2208, 2021, DOI:10.32604/jrm.2021.015394 - 22 June 2021

    Abstract Recycled concrete powder (RCP) is used more and more in cement-based materials, but its influence on the hydration process is still unclear. Therefore, this paper studied the influence of recycled concrete powder (RCP) on the hydration process of cement and provides a theoretical basis for the hydration mechanism of cement composite materials. The hydration heat method was used to systematically analyze the thermal evolution process of cement paste with or without RCP. Hydration products were identified using X-ray diffraction (XRD) and thermal analysis (TG–DSC). The pore structure change of cement pastes was analyzed by mercury… More > Graphic Abstract

    Utilization of Recycled Concrete Powder in Cement Composite: Strength, Microstructure and Hydration Characteristics

  • Open Access

    ARTICLE

    Study on Carbonation Damage Constitutive Curve and Microscopic Damage Mechanism of Tailing Recycled Concrete

    Tao Li1,2,*, Sheliang Wang2, Fan Xu2,*, Binbin Li3, Bin Dang1, Meng Zhan4, Zhiqi Wang5

    Journal of Renewable Materials, Vol.9, No.8, pp. 1413-1432, 2021, DOI:10.32604/jrm.2021.012744 - 08 April 2021

    Abstract To improve the resource utilization of recycled aggregate concrete (RAC) and make use of the unique pozzolanic activation characteristics of iron ore tailing (IOT), the constitutive curves of tailing recycled concrete (TRC) before and after carbonization were analyzed theoretically, experimentally and microscopically. Firstly, according to the experimental data, the damage constitutive and related damage parameters of TRC were theoretically established by Weibull probability distribution function. Secondly, the comprehensive damage parameter b under different working conditions was studied. Finally, the damage mechanism was formed by EDS and SEM. The results showed that the damage constitutive model… More >

  • Open Access

    ARTICLE

    Crack Propagation and Failure Characteristics of Modeled Concrete with Natural and Brick Aggregates

    Qiong Liu, Jianzhuang Xiao*, Amardeep Singh

    Journal of Renewable Materials, Vol.9, No.7, pp. 1309-1327, 2021, DOI:10.32604/jrm.2021.015326 - 18 March 2021

    Abstract The failure characteristics of recycled concrete containing brick aggregates are still indistinct, especially how the angular aggregates effect the crack propagation. Based on the concept of modeled concrete, the development of cracks in concrete containing the natural aggregate and brick aggregate under a compression loading was studied. The strain distribution was analyzed with the Digital Image Correlation (DIC). The modeled aggregates include circular and squared ones, and the squared modeled aggregates were placed in different orientations, including 0°, 22.5° and 45°. The results show that when the aggregate is placed at 45°, the upper and… More >

  • Open Access

    ARTICLE

    Experimental and Theoretical Study on the Flexural Behavior of Recycled Concrete Beams Reinforced with GFRP Bars

    Xinzhan Chen1, Xiangqing Kong1,2,*, Ying Fu2,*, Wanting Sun1, Renguo Guan2

    Journal of Renewable Materials, Vol.9, No.6, pp. 1169-1188, 2021, DOI:10.32604/jrm.2021.014809 - 11 March 2021

    Abstract This paper experimentally investigated the flexural behavior of reinforced recycled aggregate concrete (RAC) beams reinforced with glass fiber-reinforced polymer (GFRP) bars. A total of twelve beams were built and tested up to failure under four-point bending. The main parameters were reinforcement ratio (0.38%, 0.60%, and 1.17%), recycled aggregate replacement ratio (R = 0, 50%, and 100%) and longitudinal reinforcement types (GFRP and steel). The flexural capacity, failure modes, flexibility deformation, reinforcement strains and crack distribution of the tested beams were investigated and compared with the calculation models of American code ACI 440.1-R-15, Canadian code CSA… More >

  • Open Access

    Ecological Concrete Based on Blast-Furnace Cement with Incorporated Coarse Recycled Concrete Aggregate and Fly Ash Addition

    Wojciech Kubissa1, Roman Jaskulski1, Pavel Reiterman2*

    Journal of Renewable Materials, Vol.5, Suppl.1, pp. 53-61, 2017, DOI:10.7569/JRM.2017.634103

    Abstract This article deals with an experimental study concerning the development of concrete mixtures with significant ecological benefits. The studied concrete mixtures were based on blast-furnace cement, with an additional application of supplementary cementitious materials—fly ash, metakaolin, and silica fume and fluidized fly ash. Coarse aggregate in the form of crushed concrete was applied for all studied concrete mixtures. The experimental program was primarily focused on the assessment of the durability properties of the studied mixtures in terms of mechanical tests, absorption tests, chloride migration coefficient tests, water penetration tests, and accelerated carbonation depth tests. The More >

Displaying 1-10 on page 1 of 10. Per Page