Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Experimental and Numerical Analysis of High-Strength Concrete Beams Including Steel Fibers and Large-Particle Recycled Coarse Aggregates

    Chunyang Liu1,2,*, Yangyang Wu1, Yingqi Gao1, Zhenyun Tang3

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.5, pp. 947-958, 2021, DOI:10.32604/fdmp.2021.016283 - 05 July 2021

    Abstract In order to study the performances of high-strength concrete beams including steel fibers and large-particle recycled aggregates, four different beams have been designed, tested experimentally and simulated numerically. As varying parameters, the replacement rates of recycled coarse aggregates and CFRP (carbon fiber reinforced polymer) sheets have been considered. The failure mode of these beams, related load deflection curves, stirrup strain and shear capacity have been determined through monotonic loading tests. The simulations have been conducted using the ABAQUS finite element software. The results show that the shear failure mode of recycled concrete beams is similar More >

  • Open Access

    ARTICLE

    Multi-Scale Investigation on Concrete Prepared with Recycled Aggregates from Different Parent Concrete

    Zhenhua Duan, Nv Han, Amardeep Singh, Jianzhuang Xiao*

    Journal of Renewable Materials, Vol.8, No.11, pp. 1375-1390, 2020, DOI:10.32604/jrm.2020.013044 - 28 September 2020

    Abstract Recycled aggregates (RA) are frequently obtained from various unknown sources, which caused variation in properties among recycled aggre- gates concrete (RAC). This paper investigated the macro and microscopic proper- ties of RAC prepared with RAs originated from different parent concretes with 90-day strength ranging from 30 MPa to 100 MPa. These parent concretes were prepared in advance and crushed to produce RA of distinct qualities. The attached mortar content can reach up to 69% in the concrete with highest strength grade. The microscopic investigation on different RAC was conducted with the X-ray Micro-Computed Tomography scanning More >

  • Open Access

    ARTICLE

    Experimental Study of Waste Tire Rubber, Wood-Plastic Particles and Shale Ceramsite on the Performance of Self-Compacting Concrete

    Lei Tian, Liuchao Qiu*, Jingjun Li, Yongsen Yang

    Journal of Renewable Materials, Vol.8, No.2, pp. 154-170, 2020, DOI:10.32604/jrm.2020.08701 - 01 February 2020

    Abstract In recent decades, the utilization of waste tires, plastic and artificial shale ceramsite as alternative fine aggregate to make self-compacting concrete (SCC) has been recognized as an eco-friendly and sustainable method to manufacture renewable construction materials. In this study, three kinds of recycled aggregates: recycled tire rubber particles, wood-plastic particles, artificial shale ceramsite were used to replace the sand by different volume (5%, 10%, 20% and 30%), and their effects on the fresh and hardened properties of SCC were investigated. The slump flow and V-funnel tests were conducted to evaluate the fresh properties of modified-SCC… More >

Displaying 1-10 on page 1 of 3. Per Page