Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Coupling Analysis of Multiple Machine Learning Models for Human Activity Recognition

    Yi-Chun Lai1, Shu-Yin Chiang2, Yao-Chiang Kan3, Hsueh-Chun Lin4,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3783-3803, 2024, DOI:10.32604/cmc.2024.050376 - 20 June 2024

    Abstract Artificial intelligence (AI) technology has become integral in the realm of medicine and healthcare, particularly in human activity recognition (HAR) applications such as fitness and rehabilitation tracking. This study introduces a robust coupling analysis framework that integrates four AI-enabled models, combining both machine learning (ML) and deep learning (DL) approaches to evaluate their effectiveness in HAR. The analytical dataset comprises 561 features sourced from the UCI-HAR database, forming the foundation for training the models. Additionally, the MHEALTH database is employed to replicate the modeling process for comparative purposes, while inclusion of the WISDM database, renowned… More > Graphic Abstract

    Coupling Analysis of Multiple Machine Learning Models for Human Activity Recognition

  • Open Access

    ARTICLE

    An Intrusion Detection System for SDN Using Machine Learning

    G. Logeswari*, S. Bose, T. Anitha

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 867-880, 2023, DOI:10.32604/iasc.2023.026769 - 06 June 2022

    Abstract Software Defined Networking (SDN) has emerged as a promising and exciting option for the future growth of the internet. SDN has increased the flexibility and transparency of the managed, centralized, and controlled network. On the other hand, these advantages create a more vulnerable environment with substantial risks, culminating in network difficulties, system paralysis, online banking frauds, and robberies. These issues have a significant detrimental impact on organizations, enterprises, and even economies. Accuracy, high performance, and real-time systems are necessary to achieve this goal. Using a SDN to extend intelligent machine learning methodologies in an Intrusion… More >

  • Open Access

    ARTICLE

    Diabetes Prediction Algorithm Using Recursive Ridge Regression L2

    Milos Mravik1, T. Vetriselvi2, K. Venkatachalam3,*, Marko Sarac1, Nebojsa Bacanin1, Sasa Adamovic1

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 457-471, 2022, DOI:10.32604/cmc.2022.020687 - 03 November 2021

    Abstract At present, the prevalence of diabetes is increasing because the human body cannot metabolize the glucose level. Accurate prediction of diabetes patients is an important research area. Many researchers have proposed techniques to predict this disease through data mining and machine learning methods. In prediction, feature selection is a key concept in preprocessing. Thus, the features that are relevant to the disease are used for prediction. This condition improves the prediction accuracy. Selecting the right features in the whole feature set is a complicated process, and many researchers are concentrating on it to produce a… More >

  • Open Access

    ARTICLE

    Analysis of Feature Importance and Interpretation for Malware Classification

    Dong-Wook Kim1, Gun-Yoon Shin1, Myung-Mook Han2, *

    CMC-Computers, Materials & Continua, Vol.65, No.3, pp. 1891-1904, 2020, DOI:10.32604/cmc.2020.010933 - 16 September 2020

    Abstract This study was conducted to enable prompt classification of malware, which was becoming increasingly sophisticated. To do this, we analyzed the important features of malware and the relative importance of selected features according to a learning model to assess how those important features were identified. Initially, the analysis features were extracted using Cuckoo Sandbox, an open-source malware analysis tool, then the features were divided into five categories using the extracted information. The 804 extracted features were reduced by 70% after selecting only the most suitable ones for malware classification using a learning model-based feature selection More >

Displaying 1-10 on page 1 of 4. Per Page