Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    Optimized Phishing Detection with Recurrent Neural Network and Whale Optimizer Algorithm

    Brij Bhooshan Gupta1,2,3,*, Akshat Gaurav4, Razaz Waheeb Attar5, Varsha Arya6,7, Ahmed Alhomoud8, Kwok Tai Chui9

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4895-4916, 2024, DOI:10.32604/cmc.2024.050815 - 12 September 2024

    Abstract Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape, necessitating the development of more sophisticated detection methods. Traditional machine learning approaches to phishing detection have relied heavily on feature engineering and have often fallen short in adapting to the dynamically changing patterns of phishing Uniform Resource Locator (URLs). Addressing these challenge, we introduce a framework that integrates the sequential data processing strengths of a Recurrent Neural Network (RNN) with the hyperparameter optimization prowess of the Whale Optimization Algorithm (WOA). Our model capitalizes on an extensive Kaggle dataset, featuring over 11,000 URLs, each More >

  • Open Access

    ARTICLE

    Malware Attacks Detection in IoT Using Recurrent Neural Network (RNN)

    Abeer Abdullah Alsadhan1, Abdullah A. Al-Atawi2, Hanen karamti3, Abid Jameel4, Islam Zada5, Tan N. Nguyen6,*

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 135-155, 2024, DOI:10.32604/iasc.2023.041130 - 21 May 2024

    Abstract IoT (Internet of Things) devices are being used more and more in a variety of businesses and for a variety of tasks, such as environmental data collection in both civilian and military situations. They are a desirable attack target for malware intended to infect specific IoT devices due to their growing use in a variety of applications and their increasing computational and processing power. In this study, we investigate the possibility of detecting IoT malware using recurrent neural networks (RNNs). RNN is used in the proposed method to investigate the execution operation codes of ARM-based More >

  • Open Access

    ARTICLE

    Fake News Classification: Past, Current, and Future

    Muhammad Usman Ghani Khan1, Abid Mehmood2, Mourad Elhadef2, Shehzad Ashraf Chaudhry2,3,*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2225-2249, 2023, DOI:10.32604/cmc.2023.038303 - 29 November 2023

    Abstract The proliferation of deluding data such as fake news and phony audits on news web journals, online publications, and internet business apps has been aided by the availability of the web, cell phones, and social media. Individuals can quickly fabricate comments and news on social media. The most difficult challenge is determining which news is real or fake. Accordingly, tracking down programmed techniques to recognize fake news online is imperative. With an emphasis on false news, this study presents the evolution of artificial intelligence techniques for detecting spurious social media content. This study shows past,… More >

  • Open Access

    ARTICLE

    Hyperparameter Tuning for Deep Neural Networks Based Optimization Algorithm

    D. Vidyabharathi1,*, V. Mohanraj2

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2559-2573, 2023, DOI:10.32604/iasc.2023.032255 - 15 March 2023

    Abstract For training the present Neural Network (NN) models, the standard technique is to utilize decaying Learning Rates (LR). While the majority of these techniques commence with a large LR, they will decay multiple times over time. Decaying has been proved to enhance generalization as well as optimization. Other parameters, such as the network’s size, the number of hidden layers, dropouts to avoid overfitting, batch size, and so on, are solely based on heuristics. This work has proposed Adaptive Teaching Learning Based (ATLB) Heuristic to identify the optimal hyperparameters for diverse networks. Here we consider three More >

  • Open Access

    ARTICLE

    Continuous Mobile User Authentication Using a Hybrid CNN-Bi-LSTM Approach

    Sarah Alzahrani1, Joud Alderaan1, Dalya Alatawi1, Bandar Alotaibi1,2,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 651-667, 2023, DOI:10.32604/cmc.2023.035173 - 06 February 2023

    Abstract Internet of Things (IoT) devices incorporate a large amount of data in several fields, including those of medicine, business, and engineering. User authentication is paramount in the IoT era to assure connected devices’ security. However, traditional authentication methods and conventional biometrics-based authentication approaches such as face recognition, fingerprints, and password are vulnerable to various attacks, including smudge attacks, heat attacks, and shoulder surfing attacks. Behavioral biometrics is introduced by the powerful sensing capabilities of IoT devices such as smart wearables and smartphones, enabling continuous authentication. Artificial Intelligence (AI)-based approaches introduce a bright future in refining… More >

  • Open Access

    ARTICLE

    Automated Facial Expression Recognition and Age Estimation Using Deep Learning

    Syeda Amna Rizwan1, Yazeed Yasin Ghadi2, Ahmad Jalal1, Kibum Kim3,*

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 5235-5252, 2022, DOI:10.32604/cmc.2022.023328 - 14 January 2022

    Abstract With the advancement of computer vision techniques in surveillance systems, the need for more proficient, intelligent, and sustainable facial expressions and age recognition is necessary. The main purpose of this study is to develop accurate facial expressions and an age recognition system that is capable of error-free recognition of human expression and age in both indoor and outdoor environments. The proposed system first takes an input image pre-process it and then detects faces in the entire image. After that landmarks localization helps in the formation of synthetic face mask prediction. A novel set of features More >

  • Open Access

    ARTICLE

    Optimized Fuzzy Enabled Semi-Supervised Intrusion Detection System for Attack Prediction

    Gautham Praveen Ramalingam1, R. Arockia Xavier Annie1, Shobana Gopalakrishnan2,*

    Intelligent Automation & Soft Computing, Vol.32, No.3, pp. 1479-1492, 2022, DOI:10.32604/iasc.2022.022211 - 09 December 2021

    Abstract Detection of intrusion plays an important part in data protection. Intruders will carry out attacks from a compromised user account without being identified. The key technology is the effective detection of sundry threats inside the network. However, process automation is experiencing expanded use of information communication systems, due to high versatility of interoperability and ease off 34 administration. Traditional knowledge technology intrusion detection systems are not completely tailored to process automation. The combined use of fuzziness-based and RNN-IDS is therefore highly suited to high-precision classification, and its efficiency is better compared to that of conventional More >

  • Open Access

    ARTICLE

    A Prediction Method of Trend-Type Capacity Index Based on Recurrent Neural Network

    Wenxiao Wang1,*, Xiaoyu Li1,*, Yin Ding1, Feizhou Wu2, Shan Yang3

    Journal of Quantum Computing, Vol.3, No.1, pp. 25-33, 2021, DOI:10.32604/jqc.2021.016346 - 20 May 2021

    Abstract Due to the increase in the types of business and equipment in telecommunications companies, the performance index data collected in the operation and maintenance process varies greatly. The diversity of index data makes it very difficult to perform high-precision capacity prediction. In order to improve the forecasting efficiency of related indexes, this paper designs a classification method of capacity index data, which divides the capacity index data into trend type, periodic type and irregular type. Then for the prediction of trend data, it proposes a capacity index prediction model based on Recurrent Neural Network (RNN), More >

Displaying 1-10 on page 1 of 8. Per Page