Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    A Recurrent Neural Network for Multimodal Anomaly Detection by Using Spatio-Temporal Audio-Visual Data

    Sameema Tariq1, Ata-Ur- Rehman2,3, Maria Abubakar2, Waseem Iqbal4, Hatoon S. Alsagri5, Yousef A. Alduraywish5, Haya Abdullah A. Alhakbani5,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2493-2515, 2024, DOI:10.32604/cmc.2024.055787 - 18 November 2024

    Abstract In video surveillance, anomaly detection requires training machine learning models on spatio-temporal video sequences. However, sometimes the video-only data is not sufficient to accurately detect all the abnormal activities. Therefore, we propose a novel audio-visual spatiotemporal autoencoder specifically designed to detect anomalies for video surveillance by utilizing audio data along with video data. This paper presents a competitive approach to a multi-modal recurrent neural network for anomaly detection that combines separate spatial and temporal autoencoders to leverage both spatial and temporal features in audio-visual data. The proposed model is trained to produce low reconstruction error… More >

  • Open Access

    ARTICLE

    FREPD: A Robust Federated Learning Framework on Variational Autoencoder

    Zhipin Gu1, Liangzhong He2, Peiyan Li1, Peng Sun3, Jiangyong Shi1, Yuexiang Yang1,*

    Computer Systems Science and Engineering, Vol.39, No.3, pp. 307-320, 2021, DOI:10.32604/csse.2021.017969 - 12 August 2021

    Abstract Federated learning is an ideal solution to the limitation of not preserving the users’ privacy information in edge computing. In federated learning, the cloud aggregates local model updates from the devices to generate a global model. To protect devices’ privacy, the cloud is designed to have no visibility into how these updates are generated, making detecting and defending malicious model updates a challenging task. Unlike existing works that struggle to tolerate adversarial attacks, the paper manages to exclude malicious updates from the global model’s aggregation. This paper focuses on Byzantine attack and backdoor attack in… More >

  • Open Access

    ARTICLE

    Multi-Layer Reconstruction Errors Autoencoding and Density Estimate for Network Anomaly Detection

    Ruikun Li1,*, Yun Li2, Wen He1,3, Lirong Chen1, Jianchao Luo1

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.1, pp. 381-398, 2021, DOI:10.32604/cmes.2021.016264 - 28 June 2021

    Abstract Anomaly detection is an important method for intrusion detection. In recent years, unsupervised methods have been widely researched because they do not require labeling. For example, a nonlinear autoencoder can use reconstruction errors to attain the discrimination threshold. This method is not effective when the model complexity is high or the data contains noise. The method for detecting the density of compressed features in a hidden layer can be used to reduce the influence of noise on the selection of the threshold because the density of abnormal data in hidden layers is smaller than normal… More >

Displaying 1-10 on page 1 of 3. Per Page