Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Recommendation Method for Contrastive Enhancement of Neighborhood Information

    Hairong Wang, Beijing Zhou*, Lisi Zhang, He Ma

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 453-472, 2024, DOI:10.32604/cmc.2023.046560 - 30 January 2024

    Abstract Knowledge graph can assist in improving recommendation performance and is widely applied in various personalized recommendation domains. However, existing knowledge-aware recommendation methods face challenges such as weak user-item interaction supervisory signals and noise in the knowledge graph. To tackle these issues, this paper proposes a neighbor information contrast-enhanced recommendation method by adding subtle noise to construct contrast views and employing contrastive learning to strengthen supervisory signals and reduce knowledge noise. Specifically, first, this paper adopts heterogeneous propagation and knowledge-aware attention networks to obtain multi-order neighbor embedding of users and items, mining the high-order neighbor information… More >

  • Open Access

    ARTICLE

    A Novel Cluster Analysis-Based Crop Dataset Recommendation Method in Precision Farming

    K. R. Naveen Kumar1, Husam Lahza2, B. R. Sreenivasa3,*, Tawfeeq Shawly4, Ahmed A. Alsheikhy5, H. Arunkumar1, C. R. Nirmala1

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3239-3260, 2023, DOI:10.32604/csse.2023.036629 - 03 April 2023

    Abstract Data mining and analytics involve inspecting and modeling large pre-existing datasets to discover decision-making information. Precision agriculture uses data mining to advance agricultural developments. Many farmers aren’t getting the most out of their land because they don’t use precision agriculture. They harvest crops without a well-planned recommendation system. Future crop production is calculated by combining environmental conditions and management behavior, yielding numerical and categorical data. Most existing research still needs to address data preprocessing and crop categorization/classification. Furthermore, statistical analysis receives less attention, despite producing more accurate and valid results. The study was conducted on… More >

  • Open Access

    ARTICLE

    A Recommendation Method for Highly Sparse Dataset Based on Teaching Recommendation Factorization Machines

    Dunhong Yao1, 2, 3, Shijun Li4, *, Ang Li5, Yu Chen6

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 1959-1975, 2020, DOI:10.32604/cmc.2020.010186 - 30 June 2020

    Abstract There is no reasonable scientific basis for selecting the excellent teachers of the school’s courses. To solve the practical problem, we firstly give a series of normalization models for defining the key attributes of teachers’ professional foundation, course difficulty coefficient, and comprehensive evaluation of teaching. Then, we define a partial weight function to calculate the key attributes, and obtain the partial recommendation values. Next, we construct a highly sparse Teaching Recommendation Factorization Machines (TRFMs) model, which takes the 5-tuples relation including teacher, course, teachers’ professional foundation, course difficulty, teaching evaluation as the feature vector, and… More >

Displaying 1-10 on page 1 of 3. Per Page