Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Fusion of Internal Similarity to Improve the Accuracy of Recommendation Algorithm

    Zejun Yang1, Denghui Xia1, Jin Liu1, Chao Zheng2, Yanzhen Qu1,3,4, Yadang Chen1, Chengjun Zhang1,2,3,*

    Journal on Internet of Things, Vol.3, No.2, pp. 65-76, 2021, DOI:10.32604/jiot.2021.015401 - 15 July 2021

    Abstract Collaborative filtering algorithms (CF) and mass diffusion (MD) algorithms have been successfully applied to recommender systems for years and can solve the problem of information overload. However, both algorithms suffer from data sparsity, and both tend to recommend popular products, which have poor diversity and are not suitable for real life. In this paper, we propose a user internal similarity-based recommendation algorithm (UISRC). UISRC first calculates the item-item similarity matrix and calculates the average similarity between items purchased by each user as the user’s internal similarity. The internal similarity of users is combined to modify More >

Displaying 1-10 on page 1 of 1. Per Page