Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Possible Classifications of Social Network Addiction: A Latent Profile Analysis of Chinese College Students

    Lin Luo1,2,*, Junfeng Yuan1, Yanling Wang1, Rui Zhu1, Huilin Xu1, Siyuan Bi1, Zhongge Zhang1

    International Journal of Mental Health Promotion, Vol.27, No.6, pp. 863-876, 2025, DOI:10.32604/ijmhp.2025.064385 - 30 June 2025

    Abstract Objectives: Social Network Addiction (SNA) is becoming increasingly prevalent among college students; however, there remains a lack of consensus regarding the measurement tools and their optimal cutoff score. This study aims to validate the 21-item Social Network Addiction Scale-Chinese (SNAS-C) in its Chinese version and to determine its optimal cutoff score for identifying potential SNA cases within the college student population. Methods: A cross-sectional survey was conducted, recruiting 3387 college students. Latent profile analysis (LPA) and receiver operating characteristic (ROC) curve analysis were employed to establish the optimal cutoff score for the validated 21-item SNAS-C. Results:More >

  • Open Access

    ARTICLE

    Prediction of Flash Flood Susceptibility of Hilly Terrain Using Deep Neural Network: A Case Study of Vietnam

    Huong Thi Thanh Ngo1, Nguyen Duc Dam1, Quynh-Anh Thi Bui1, Nadhir Al-Ansari2,*, Romulus Costache3,4,*, Hang Ha5, Quynh Duy Bui5, Sy Hung Mai6, Indra Prakash7, Binh Thai Pham1

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2219-2241, 2023, DOI:10.32604/cmes.2023.022566 - 23 November 2022

    Abstract Flash floods are one of the most dangerous natural disasters, especially in hilly terrain, causing loss of life, property, and infrastructures and sudden disruption of traffic. These types of floods are mostly associated with landslides and erosion of roads within a short time. Most of Vietnam is hilly and mountainous; thus, the problem due to flash flood is severe and requires systematic studies to correctly identify flood susceptible areas for proper landuse planning and traffic management. In this study, three Machine Learning (ML) methods namely Deep Learning Neural Network (DL), Correlation-based Feature Weighted Naive Bayes… More >

  • Open Access

    ARTICLE

    Predict the Chances of Heart Abnormality in Diabetic Patients Through Machine Learning

    Monika Saraswat*, A. K. Wadhwani, Sulochana Wadhwani

    Journal on Artificial Intelligence, Vol.4, No.2, pp. 61-76, 2022, DOI:10.32604/jai.2022.028140 - 18 July 2022

    Abstract Today, more families are affected by Diabetes Mellitus (DM) disease on account of its continually increasing occurrence. Most patients remain unknown about their health quality or the DM’s risk factors prior to diagnosis. The medical world has witnessed that individuals are affected by two different diabetes namely a) Type-1 diabetes (T1D), as well as b) Type-2 diabetes (T2D). As Type 2 Diabetes affects the other organs of the body, the proposed system concentrates specifically on Type 2 Diabetes. This work aims to ascertain the cardiac disorder in T2D patients. As of the ECG dataset, the… More >

  • Open Access

    ARTICLE

    Synovial Sarcoma Classification Technique Using Support Vector Machine and Structure Features

    P. Arunachalam1, N. Janakiraman1,*, Arun Kumar Sivaraman2, A. Balasundaram3, Rajiv Vincent2, Sita Rani4, Barnali Dey5, A. Muralidhar2, M. Rajesh2

    Intelligent Automation & Soft Computing, Vol.32, No.2, pp. 1241-1259, 2022, DOI:10.32604/iasc.2022.022573 - 17 November 2021

    Abstract Digital clinical histopathology technique is used for accurately diagnosing cancer cells and achieving optimal results using Internet of Things (IoT) and blockchain technology. The cell pattern of Synovial Sarcoma (SS) cancer images always appeared as spindle shaped cell (SSC) structures. Identifying the SSC and its prognostic indicator are very crucial problems for computer aided diagnosis, especially in healthcare industry applications. A constructive framework has been proposed for the classification of SSC feature components using Support Vector Machine (SVM) with the assistance of relevant Support Vectors (SVs). This framework used the SS images, and it has… More >

Displaying 1-10 on page 1 of 4. Per Page