Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Efficient Cooperative Target Node Localization with Optimization Strategy Based on RSS for Wireless Sensor Networks

    Xinrong Zhang1, Bo Chang2,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 5079-5095, 2025, DOI:10.32604/cmc.2025.059469 - 06 March 2025

    Abstract In the RSSI-based positioning algorithm, regarding the problem of a great conflict between precision and cost, a low-power and low-cost synergic localization algorithm is proposed, where effective methods are adopted in each phase of the localization process and fully use the detective information in the network to improve the positioning precision and robustness. In the ranging period, the power attenuation factor is obtained through the wireless channel modeling, and the RSSI value is transformed into distance. In the positioning period, the preferred reference nodes are used to calculate coordinates. In the position optimization period, Taylor… More >

  • Open Access

    ARTICLE

    Enhancing Indoor User Localization: An Adaptive Bayesian Approach for Multi-Floor Environments

    Abdulraqeb Alhammadi1,*, Zaid Ahmed Shamsan2, Arijit De3

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 1889-1905, 2024, DOI:10.32604/cmc.2024.051487 - 15 August 2024

    Abstract Indoor localization systems are crucial in addressing the limitations of traditional global positioning system (GPS) in indoor environments due to signal attenuation issues. As complex indoor spaces become more sophisticated, indoor localization systems become essential for improving user experience, safety, and operational efficiency. Indoor localization methods based on Wi-Fi fingerprints require a high-density location fingerprint database, but this can increase the computational burden in the online phase. Bayesian networks, which integrate prior knowledge or domain expertise, are an effective solution for accurately determining indoor user locations. These networks use probabilistic reasoning to model relationships among… More >

Displaying 1-10 on page 1 of 2. Per Page