Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Analyzing the Impact of Scene Transitions on Indoor Camera Localization through Scene Change Detection in Real-Time

    Muhammad S. Alam1,5,*, Farhan B. Mohamed1,3, Ali Selamat2, Faruk Ahmed4, AKM B. Hossain6,7

    Intelligent Automation & Soft Computing, Vol.39, No.3, pp. 417-436, 2024, DOI:10.32604/iasc.2024.051999

    Abstract Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems. The scene can change during the image sequence and plays a vital role in the localization performance of robotic applications in terms of accuracy and speed. This research proposed a real-time indoor camera localization system based on a recurrent neural network that detects scene change during the image sequence. An annotated image dataset trains the proposed system and predicts the camera pose in real-time. The system mainly improved the localization performance of indoor cameras by more accurately predicting the camera More >

  • Open Access

    ARTICLE

    A Real-Time Localization Algorithm for Unmanned Aerial Vehicle Based on Continuous Images Processing

    Peng Geng1,*, Annan Yang2, Yan Liu3

    Journal on Artificial Intelligence, Vol.6, pp. 43-52, 2024, DOI:10.32604/jai.2024.047642

    Abstract This article presents a real-time localization method for Unmanned Aerial Vehicles (UAVs) based on continuous image processing. The proposed method employs the Scale Invariant Feature Transform (SIFT) algorithm to identify key points in multi-scale space and generate descriptor vectors to match identical objects across multiple images. These corresponding points in the image provide pixel positions, which can be combined with transformation equations, allow for the calculation of the UAV’s actual ground position. Additionally, the physical coordinates of matching points in the image can be obtained, corresponding to the UAV’s physical coordinates. The method achieves real-time More >

Displaying 1-10 on page 1 of 2. Per Page