Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    REVIEW

    Gasotransmitters as Key Members of the Signaling Network Regulating Stomatal Response: Interaction with Other Molecules

    Yuriy E. Kolupaev1,2,*, Tetiana O. Yastreb1,*, Alexander P. Dmitriev3

    Phyton-International Journal of Experimental Botany, Vol.93, No.12, pp. 3151-3195, 2024, DOI:10.32604/phyton.2024.057922 - 31 December 2024

    Abstract Stomatal closure, which serves to limit water loss, represents one of the most rapid and critical reactions of plants, occurring not only in response to drought but also to a range of other stressors, including salinity, extreme temperatures, heavy metals, gaseous toxicants, and pathogen infection. ABA is considered to be the main regulator of stomatal movements in plants under abiotic stress. In the last two decades, however, the list of plant hormones and other physiologically active substances that affect stomatal status has expanded considerably. It is believed that stomata are regulated by a complex multicomponent… More >

  • Open Access

    ARTICLE

    Oxidative Stress Tolerance Mechanism in Rice under Salinity

    Mahmuda Binte Monsur1, Nasrin Akter Ivy1, M. Moynul Haque2, Mirza Hasanuzzaman3, Ayman EL Sabagh4,5,*, Md. Motiar Rohman6,*

    Phyton-International Journal of Experimental Botany, Vol.89, No.3, pp. 497-517, 2020, DOI:10.32604/phyton.2020.09144 - 22 June 2020

    Abstract The research was conducted to investigate comparative oxidative damage including probable protective roles of antioxidant and glyoxalase systems in rice (Oryza sativa L.) seedlings under salinity stress. Seedlings of two rice genotypes: Pokkali (tolerant) and BRRI dhan28 (sensitive) were subjected to 8 dSm−1 salinity stress for seven days in a hydroponic system. We observed significant variation between Pokkali and BRRI dhan28 in phenotypic, biochemical and molecular level under salinity stress. Carotenoid content, ion homeostasis, antioxidant enzymes, ascorbate and glutathione redox system and proline accumulation may help Pokkali to develop defense system during salinity stress. However, the activity More >

  • Open Access

    ARTICLE

    Detection of ROS and translocation of ERP-57 in apoptotic induced human neuroblastoma (SH-SY5Y) cells

    Atif Kamil1, Mubarak Ali Khan1, Muhammad AAsim2, Nadir Zaman Khan2, Raham Sher Khan1, Muhsin Jamal3, Waqar Ahmad4, Mir Azam Khan4, Fazal Jalil4

    BIOCELL, Vol.43, No.3, pp. 167-174, 2019, DOI:10.32604/biocell.2019.06729

    Abstract Several toxic compounds are known to induce apoptosis in mammalian cell lines. The human neuroblastoma cells (SH-SY5Y) were exposed to the phosphatase inhibiting toxin okadaic acid (OA) or hydrogen peroxide (H2O2) to induce apoptosis as well as generate reactive oxygen species (ROS). Mitoxantrone (MXT) was used as a positive control for apoptosis. The SH-SY5Y cells were transfected with eukaryotic expression plasmid pHyPer-dMito encoding mitochondrial-targeted fluorescent or pHyPer-dCito encoding cytoplasmic-targeted fluorescent sensor for hydrogen peroxide (HyPer). The ERp57, also called GRP58 (Glucose-regulated protein 58), is a stress protein induced in conditions like glucose starvation and More >

  • Open Access

    ARTICLE

    Emodin Induces Apoptosis of Colon Cancer Cells via Induction of Autophagy in a ROS-Dependent Manner

    Yuanyuan Wang*1, Qin Luo*1, Xianlu He†1, He Wei*, Ting Wang*, Jichun Shao, Xinni Jiang*

    Oncology Research, Vol.26, No.6, pp. 889-899, 2018, DOI:10.3727/096504017X15009419625178

    Abstract Recent studies revealed that emodin extracted from Chinese herbs exhibits an anticancer effect on different cancer types, including colon cancer. However, the mechanism is not well understood. In our study, we confirmed that emodin treatment inhibited cell viability and induced apoptosis in colon cancer cells. Further experiments found that emodin was also able to induce autophagy, which is indispensible for apoptosis induced by emodin. More interestingly, emodin treatment also results in mitochondrial dysfunction and ROS accumulation in colon cancer cells. Finally, we stressed that ROS accumulation is essential for autophagy and apoptosis induced by emodin. More >

  • Open Access

    ARTICLE

    Detection of Necroptosis in Ligand-Mediated and Hypoxia-Induced Injury of Hepatocytes Using a Novel Optic Probe-Detecting Receptor-Interacting Protein (RIP)1/RIP3 Binding

    Sanae Haga*, Akira Kanno, Takeaki Ozawa, Naoki Morita§, Mami Asano,¶ and Michitaka Ozaki

    Oncology Research, Vol.26, No.3, pp. 503-513, 2018, DOI:10.3727/096504017X15005102445191

    Abstract Liver injury is often observed in various pathological conditions including posthepatectomy state and cancer chemotherapy. It occurs mainly as a consequence of the combined necrotic and apoptotic types of cell death. In order to study liver/hepatocyte injury by the necrotic type of cell death, we studied signal-regulated necrosis (necroptosis) by developing a new optic probe for detecting receptor-interacting protein kinase 1 (RIP)/RIP3 binding, an essential process for necroptosis induction. In the mouse hepatocyte cell line, TIB-73 cells, TNF-a/cycloheximide (T/C) induced RIP1/3 binding only when caspase activity was suppressed by the caspase-specific inhibitor z-VAD-fmk (zVAD). T/C/zVAD-induced… More >

  • Open Access

    ARTICLE

    Betulinic Acid Inhibits Cell Proliferation in Human Oral Squamous Cell Carcinoma via Modulating ROS-Regulated p53 Signaling

    Huan Shen*1, Li Liu†1, Yongjin Yang*, Wenxing Xun, Kewen Wei, Guang Zeng

    Oncology Research, Vol.25, No.7, pp. 1141-1152, 2017, DOI:10.3727/096504017X14841698396784

    Abstract Oral squamous cell carcinoma (OSCC) is a common cancer of the head and neck. Betulinic acid (BA) is a naturally occurring pentacyclic triterpenoid. The present study was designed to explore the effects of BA on OSCC KB cell proliferation in vitro and on implanted tumor growth in vivo and to examine the possible molecular mechanisms. The results showed that BA dose-dependently inhibited KB cell proliferation and decreased implanted tumor volume. In addition, BA significantly promoted mitochondrial apoptosis, as reflected by an increase in TUNEL+ cells and the activities of caspases 3 and 9, an increase… More >

  • Open Access

    ARTICLE

    Crude Flavonoid Extract of Medicinal Herb Zingibar officinale Inhibits Proliferation and Induces Apoptosis in Hepatocellular Carcinoma Cells

    Ayman I. Elkady*†, Osama A. Abu-Zinadah*, Rania Abd El Hamid Hussein‡§

    Oncology Research, Vol.25, No.6, pp. 897-912, 2017, DOI:10.3727/096504016X14816352324532

    Abstract There is an urgent need to improve the clinical management of hepatocellular carcinoma (HCC), one of the most common causes of global cancer-related deaths. Zingibar officinale is a medicinal herb used throughout history for both culinary and medicinal purposes. It has antioxidant, anticarcinogenic, and free radical scavenging properties. Previously, we proved that the crude flavonoid extract of Z. officinale (CFEZO) inhibited growth and induced apoptosis in several cancer cell lines. However, the effect of the CFEZO on an HCC cell line has not yet been evaluated. In this study, we explored the anticancer activity of CFEZO against… More >

  • Open Access

    ARTICLE

    Depletion of NFBD1/MDC1 Induces Apoptosis in Nasopharyngeal Carcinoma Cells Through the p53–ROS–Mitochondrial Pathway

    Zhihai Wang*, Kui Liao, Wenqi Zuo*, Xueliang Liu*, Zhili Qiu*, Zhitao Gong*, Chuan Liu*, Quan Zeng*, Yi Qian*, Liang Jiang*, Youquan Bu, Suling Hong*, Guohua Hu*

    Oncology Research, Vol.25, No.1, pp. 123-136, 2017, DOI:10.3727/096504016X14732772150226

    Abstract NFBD1, a signal amplifier of the p53 pathway, is vital for protecting cells from p53-mediated apoptosis and the early phase of DNA damage response under normal culture conditions. Here we investigated its expression in patients with nasopharyngeal carcinoma (NPC), and we describe the biological functions of the NFBD1 gene. We found that NFBD1 mRNA and protein were more highly expressed in NPC tissues than in nontumorous tissues. To investigate the function of NFBD1, we created NFBD1-depleted NPC cell lines that exhibited decreased cellular proliferation and colony formation, an increase in their rate of apoptosis, and More >

Displaying 1-10 on page 1 of 8. Per Page