Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    PROCEEDINGS

    A Modified Rate-Dependent Peridynamic Model with Rotation Effect for Dynamic Mechanical Behavior of Ceramic Materials

    Yaxun Liu1,2, Lisheng Liu1,2,*, Hai Mei1,2, Qiwen Liu1,2, Xin Lai1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09007

    Abstract As a mathematical expression of the dynamic mechanical behavior, the constitutive model plays an indispensable role in numerical simulations of ceramic materials. The current bond-based peridynamic constitutive models can accurately describe the dynamic mechanical behavior of partial ceramic materials under impact loading, however, the predicted value of the Poisson’s ratio is 0.25, which is not true for most of the known ceramic materials. Herein, based on the existing bond-based peridynamic constitutive model, the current study utilizes the description of tangential bond force and considers the influence of bond force on rotation to accurately predict the… More >

  • Open Access

    ARTICLE

    Implementation of OpenMP Parallelization of Rate-Dependent Ceramic Peridynamic Model

    Haoran Zhang1, Yaxun Liu2, Lisheng Liu2,*, Xin Lai2,*, Qiwen Liu2, Hai Mei2

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.1, pp. 195-217, 2022, DOI:10.32604/cmes.2022.020495 - 18 July 2022

    Abstract A rate-dependent peridynamic ceramic model, considering the brittle tensile response, compressive plastic softening and strain-rate dependence, can accurately represent the dynamic response and crack propagation of ceramic materials. However, it also considers the strain-rate dependence and damage accumulation caused by compressive plastic softening during the compression stage, requiring more computational resources for the bond force evaluation and damage evolution. Herein, the OpenMP parallel optimization of the rate-dependent peridynamic ceramic model is investigated. Also, the modules that compute the interactions between material points and update damage index are vectorized and parallelized. Moreover, the numerical examples are More >

  • Open Access

    ARTICLE

    A Rate-Dependent Peridynamic Model for the Dynamic Behavior of Ceramic Materials

    Bufan Chu1,2, Qiwen Liu1,2, Lisheng Liu1,2,3,*, Xin Lai1,2, Hai Mei1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.1, pp. 151-178, 2020, DOI:10.32604/cmes.2020.010115 - 19 June 2020

    Abstract In this study, a new bond-based peridynamic model is proposed to describe the dynamic properties of ceramics under impact loading. Ceramic materials show pseudo-plastic behavior under certain compressive loadings with high strain-rate, while the characteristic brittleness of the material dominates when it is subjected to tensile loading. In this model, brittle response under tension, softening plasticity under compression and strain-rate effect of ceramics are considered, which makes it possible to accurately capture the overall dynamic process of ceramics. This enables the investigation of the fracture mechanism for ceramic materials, during ballistic impact, in more detail.… More >

Displaying 1-10 on page 1 of 3. Per Page