Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Deep Rank-Based Average Pooling Network for Covid-19 Recognition

    Shui-Hua Wang1, Muhammad Attique Khan2, Vishnuvarthanan Govindaraj3, Steven L. Fernandes4, Ziquan Zhu5, Yu-Dong Zhang6,*

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 2797-2813, 2022, DOI:10.32604/cmc.2022.020140 - 27 September 2021

    Abstract (Aim) To make a more accurate and precise COVID-19 diagnosis system, this study proposed a novel deep rank-based average pooling network (DRAPNet) model, i.e., deep rank-based average pooling network, for COVID-19 recognition. (Methods) 521 subjects yield 1164 slice images via the slice level selection method. All the 1164 slice images comprise four categories: COVID-19 positive; community-acquired pneumonia; second pulmonary tuberculosis; and healthy control. Our method firstly introduced an improved multiple-way data augmentation. Secondly, an n-conv rank-based average pooling module (NRAPM) was proposed in which rank-based pooling—particularly, rank-based average pooling (RAP)—was employed to avoid overfitting. Third, a… More >

Displaying 1-10 on page 1 of 1. Per Page