Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Intermediary RRT*-PSO: A Multi-Directional Hybrid Fast Convergence Sampling-Based Path Planning Algorithm

    Loc Q. Huynh1, Ly V. Tran1, Phuc N. K. Phan1, Zhiqiu Yu2, Son V. T. Dao1,2,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2281-2300, 2023, DOI:10.32604/cmc.2023.034872 - 30 August 2023

    Abstract Path planning is a prevalent process that helps mobile robots find the most efficient pathway from the starting position to the goal position to avoid collisions with obstacles. In this paper, we propose a novel path planning algorithm–Intermediary RRT*-PSO-by utilizing the exploring speed advantages of Rapidly exploring Random Trees and using its solution to feed to a metaheuristic-based optimizer, Particle swarm optimization (PSO), for fine-tuning and enhancement. In Phase 1, the start and goal trees are initialized at the starting and goal positions, respectively, and the intermediary tree is initialized at a random unexplored region… More >

  • Open Access

    ARTICLE

    Improved Prediction of Slope Stability under Static and Dynamic Conditions Using Tree-Based Models

    Feezan Ahmad1, Xiaowei Tang1, Jilei Hu2,*, Mahmood Ahmad3,4, Behrouz Gordan5

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 455-487, 2023, DOI:10.32604/cmes.2023.025993 - 23 April 2023

    Abstract Slope stability prediction plays a significant role in landslide disaster prevention and mitigation. This paper’s reduced error pruning (REP) tree and random tree (RT) models are developed for slope stability evaluation and meeting the high precision and rapidity requirements in slope engineering. The data set of this study includes five parameters, namely slope height, slope angle, cohesion, internal friction angle, and peak ground acceleration. The available data is split into two categories: training (75%) and test (25%) sets. The output of the RT and REP tree models is evaluated using performance measures including accuracy (Acc), Matthews… More >

  • Open Access

    ARTICLE

    Intelligent Sound-Based Early Fault Detection System for Vehicles

    Fawad Nasim1,2,*, Sohail Masood1,2, Arfan Jaffar1,2, Usman Ahmad1, Muhammad Rashid3

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3175-3190, 2023, DOI:10.32604/csse.2023.034550 - 03 April 2023

    Abstract An intelligent sound-based early fault detection system has been proposed for vehicles using machine learning. The system is designed to detect faults in vehicles at an early stage by analyzing the sound emitted by the car. Early detection and correction of defects can improve the efficiency and life of the engine and other mechanical parts. The system uses a microphone to capture the sound emitted by the vehicle and a machine-learning algorithm to analyze the sound and detect faults. A possible fault is determined in the vehicle based on this processed sound. Binary classification is… More >

  • Open Access

    ARTICLE

    False Alarm Reduction in ICU Using Ensemble Classifier Approach

    V. Ravindra Krishna Chandar1,*, M. Thangamani2

    Intelligent Automation & Soft Computing, Vol.34, No.1, pp. 165-181, 2022, DOI:10.32604/iasc.2022.022339 - 15 April 2022

    Abstract

    During patient monitoring, false alert in the Intensive Care Unit (ICU) becomes a major problem. In the category of alarms, pseudo alarms are regarded as having no clinical or therapeutic significance, and thus they result in fatigue alarms. Artifacts are misrepresentations of tissue structures produced by imaging techniques. These Artifacts can invalidate the Arterial Blood Pressure (ABP) signal. Therefore, it is very important to develop algorithms that can detect artifacts. However, ABP has algorithmic shortcomings and limitations of design. This study is aimed at developing a real-time enhancement of independent component analysis (EICA) and time-domain

    More >

  • Open Access

    ARTICLE

    Early Detection of Lung Carcinoma Using Machine Learning

    A. Sheryl Oliver1, T. Jayasankar2, K. R. Sekar3,*, T. Kalavathi Devi4, R. Shalini5, S. Poojalaxmi5, N. G. Viswesh5

    Intelligent Automation & Soft Computing, Vol.30, No.3, pp. 755-770, 2021, DOI:10.32604/iasc.2021.016242 - 20 August 2021

    Abstract Lung cancer is a poorly understood disease. Smokers may develop lung cancer due to the inhalation of carcinogenic substances while smoking, but non-smokers may develop this disease as well. Lung cancer can spread to other parts of the body and this process is called metastasis. Because the lung cancer is difficult to identify in the initial stages. The objective of this work is to reduce the mortality rate of the disease by identifying it at an earlier stage based on the existing symptoms. Artificial intelligence plays active roles in tasks such as entropy extraction through… More >

  • Open Access

    ARTICLE

    Condition Monitoring of Roller Bearing by K-Star Classifier and K-Nearest Neighborhood Classifier Using Sound Signal.

    Rahul Kumar Sharma*1, V. Sugumaran1, Hemantha Kumar2, Amarnath M3

    Structural Durability & Health Monitoring, Vol.11, No.1, pp. 1-16, 2017, DOI:10.3970/sdhm.2017.012.001

    Abstract Most of the machineries in small or large scale industry have rotating element supported by bearings for rigid support and accurate movement. For proper functioning of machinery, condition monitoring of the bearing is very important. In present study sound signal is used to continuously monitor bearing health as sound signals of rotating machineries carry dynamic information of components. There are numerous studies in literature that are reporting superiority of vibration signal of bearing fault diagnosis. However, there are very few studies done using sound signal. The cost associated with condition monitoring using sound signal (Microphone)… More >

Displaying 1-10 on page 1 of 6. Per Page