Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Interpreting Randomly Wired Graph Models for Chinese NER

    Jie Chen1, Jiabao Xu1, Xuefeng Xi1,*, Zhiming Cui1, Victor S. Sheng2

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.1, pp. 747-761, 2023, DOI:10.32604/cmes.2022.020771 - 24 August 2022

    Abstract Interpreting deep neural networks is of great importance to understand and verify deep models for natural language processing (NLP) tasks. However, most existing approaches only focus on improving the performance of models but ignore their interpretability. In this work, we propose a Randomly Wired Graph Neural Network (RWGNN) by using graph to model the structure of Neural Network, which could solve two major problems (word-boundary ambiguity and polysemy) of Chinese NER. Besides, we develop a pipeline to explain the RWGNN by using Saliency Map and Adversarial Attacks. Experimental results demonstrate that our approach can identify More >

Displaying 1-10 on page 1 of 1. Per Page