Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Design of Miniature UWB-Based Antenna by Employing a Tri-Sectional SIR Feeder

    Ehab Dh. Hussein1,*, Yaqeen S. Mezaal2, Oguz Bayat1

    Computer Systems Science and Engineering, Vol.41, No.3, pp. 1157-1172, 2022, DOI:10.32604/csse.2022.021205 - 10 November 2021

    Abstract A novel ultra-wideband (UWB)-based microstrip antenna is presented in this work by using a slotted patch resonator, a tri-sectional stepped impedance resonator (SIR) feeder, as well as a reduced ground plane. The whole structure was realized on an FR4 substrate. The impact of incorporating several cases of ground planes on the input reflection has been thoroughly investigated under the same tri-sectional SIR feeder and by employing a slotted patch radiator. Since the complete ground plane presents an inadequate frequency response, by reducing the ground plane, the induced UWB responses are apparent while the antenna exhibits… More >

  • Open Access

    ARTICLE

    Experimental Research of the Radiator Thermal Performance Test Equipment and Its Application in Heating System

    Lian Zhang1,2,3,*, Linjun Fan4, Xin Xu5, Baowen Cao1, Heng Zhang2, Lihong Song3

    Energy Engineering, Vol.118, No.2, pp. 399-410, 2021, DOI:10.32604/EE.2021.012647 - 23 December 2020

    Abstract Radiator thermal performance test equipment plays a key role in the processing of developing a new type of heat radiator and its application products. The precise of temperature controlling, temperature measuring and flow measuring are the vital factors for a radiator thermal performance test equipment. Based on the above background, this paper improves the measurement and control system of radiator thermal performance test equipment, which improves the accuracy of the radiator thermal performance test equipment. This paper also optimizes the software and hardware system simultaneously so as to improve the precision of the auto-test system… More >

  • Open Access

    ARTICLE

    NUMERICAL SIMULATION OF METAL-PLASTIC COMPOSITE HEAT RADIATOR WITH HEMISPHERICAL MICROSTRUCTURE ARRAY

    Hui Jianga,b, Daming Wua,b,c, Jian Zhuanga,b,*, Ying Liua,b,c, Changqing Huanga,b

    Frontiers in Heat and Mass Transfer, Vol.6, pp. 1-6, 2015, DOI:10.5098/hmt.6.14

    Abstract A new type of metal-plastic composite heat radiator with hemispherical microstructure array was proposed in this paper. The influence of the geometrical parameters of the microstructure array, including size of the hemisphere, configuration of hemisphere, tilt angle of the radiator, thermal conductivity and radiation emissivity of the plastic, on the process of heat transfer under natural convection were numerically simulated. It was concluded that the metal-plastic composite heat radiator with hemispherical microstructure array had comparable heat transfer behaviors with those of metal heat radiator. So it is possible to replace metal heat radiator by such More >

Displaying 1-10 on page 1 of 3. Per Page