Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    Fractional Gradient Descent RBFNN for Active Fault-Tolerant Control of Plant Protection UAVs

    Lianghao Hua1,2, Jianfeng Zhang1,*, Dejie Li3, Xiaobo Xi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2129-2157, 2024, DOI:10.32604/cmes.2023.030535 - 15 December 2023

    Abstract With the increasing prevalence of high-order systems in engineering applications, these systems often exhibit significant disturbances and can be challenging to model accurately. As a result, the active disturbance rejection controller (ADRC) has been widely applied in various fields. However, in controlling plant protection unmanned aerial vehicles (UAVs), which are typically large and subject to significant disturbances, load disturbances and the possibility of multiple actuator faults during pesticide spraying pose significant challenges. To address these issues, this paper proposes a novel fault-tolerant control method that combines a radial basis function neural network (RBFNN) with a More > Graphic Abstract

    Fractional Gradient Descent RBFNN for Active Fault-Tolerant Control of Plant Protection UAVs

  • Open Access

    ARTICLE

    Evolution Performance of Symbolic Radial Basis Function Neural Network by Using Evolutionary Algorithms

    Shehab Abdulhabib Alzaeemi1, Kim Gaik Tay1,*, Audrey Huong1, Saratha Sathasivam2, Majid Khan bin Majahar Ali2

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 1163-1184, 2023, DOI:10.32604/csse.2023.038912 - 26 May 2023

    Abstract Radial Basis Function Neural Network (RBFNN) ensembles have long suffered from non-efficient training, where incorrect parameter settings can be computationally disastrous. This paper examines different evolutionary algorithms for training the Symbolic Radial Basis Function Neural Network (SRBFNN) through the behavior’s integration of satisfiability programming. Inspired by evolutionary algorithms, which can iteratively find the near-optimal solution, different Evolutionary Algorithms (EAs) were designed to optimize the producer output weight of the SRBFNN that corresponds to the embedded logic programming 2Satisfiability representation (SRBFNN-2SAT). The SRBFNN’s objective function that corresponds to Satisfiability logic programming can be minimized by different… More >

  • Open Access

    ARTICLE

    Neuro-Based Higher Order Sliding Mode Control for Perturbed Nonlinear Systems

    Ahmed M. Elmogy1,2,*, Wael M. Elawady2

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 385-400, 2023, DOI:10.32604/iasc.2023.032349 - 29 September 2022

    Abstract One of the great concerns when tackling nonlinear systems is how to design a robust controller that is able to deal with uncertainty. Many researchers have been working on developing such type of controllers. One of the most efficient techniques employed to develop such controllers is sliding mode control (SMC). However, the low order SMC suffers from chattering problem which harm the actuators of the control system and thus unsuitable to be used in many practical applications. In this paper, the drawbacks of low order traditional sliding mode control (FOTSMC) are resolved by presenting a… More >

  • Open Access

    ARTICLE

    A Novel Radial Basis Function Neural Network Approach for ECG Signal Classification

    S. Sathishkumar1,*, R. Devi Priya2

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 129-148, 2023, DOI:10.32604/iasc.2023.023817 - 06 June 2022

    Abstract Electrocardiogram (ECG) is a diagnostic method that helps to assess and record the electrical impulses of heart. The traditional methods in the extraction of ECG features is inneffective for avoiding the computational abstractions in the ECG signal. The cardiologist and medical specialist find numerous difficulties in the process of traditional approaches. The specified restrictions are eliminated in the proposed classifier. The fundamental aim of this work is to find the R-R interval. To analyze the blockage, different approaches are implemented, which make the computation as facile with high accuracy. The information are recovered from the… More >

  • Open Access

    ARTICLE

    Visualization Detection of Solid–Liquid Two-Phase Flow in Filling Pipeline by Electrical Capacitance Tomography Technology

    Ningbo Jing1, Mingqiao Li1, Lang Liu2,*, Yutong Shen1, Peijiao Yang1, Xuebin Qin1

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 465-476, 2022, DOI:10.32604/cmes.2022.018965 - 24 January 2022

    Abstract During mine filling, the caking in the pipeline and the waste rock in the filling slurry may cause serious safety accidents such as pipe blocking or explosion. Therefore, the visualization of the inner mine filling of the solid–liquid two-phase flow in the pipeline is important. This paper proposes a method based on capacitance tomography for the visualization of the solid–liquid distribution on the section of a filling pipe. A feedback network is used for electrical capacitance tomography reconstruction. This reconstruction method uses radial basis function neural network fitting to determine the relationship between the capacitance… More >

  • Open Access

    ARTICLE

    Nonlinear Identification and Control of Laser Welding Based on RBF Neural Networks

    Hongfei Wei1,*, Hui Zhao2, Xinlong Shi1, Shuang Liang3

    Computer Systems Science and Engineering, Vol.41, No.1, pp. 51-65, 2022, DOI:10.32604/csse.2022.017739 - 08 October 2021

    Abstract A laser beam is a heat source with a high energy density; this technology has been rapidly developed and applied in the field of welding owing to its potential advantages, and supplements traditional welding techniques. An in-depth analysis of its operating process could establish a good foundation for its application in China. It is widely understood that the welding process is a highly nonlinear and multi-variable coupling process; it comprises a significant number of complex processes with random uncertain factors. Because of their nonlinear mapping and self-learning characteristics, artificial neural networks (ANNs) have certain advantages… More >

  • Open Access

    ARTICLE

    User Interaction Based Recommender System Using Machine Learning

    R. Sabitha1, S. Vaishnavi2,*, S. Karthik1, R. M. Bhavadharini3

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 1037-1049, 2022, DOI:10.32604/iasc.2022.018985 - 22 September 2021

    Abstract In the present scenario of electronic commerce (E-Commerce), the in-depth knowledge of user interaction with resources has become a significant research concern that impacts more on analytical evaluations of recommender systems. For staying in aggressive E-Commerce, various products and services regarding distinctive requirements must be provided on time. Moreover, because of the large amount of product information available online, Recommender Systems (RS) are required to analyze the availability of consumers, which improves the decision-making of customers with detailed product knowledge and reduces time consumption. With that note, this paper derives a new model called User… More >

  • Open Access

    ARTICLE

    Prediction of Parkinson’s Disease Using Improved Radial Basis Function Neural Network

    Rajalakshmi Shenbaga Moorthy1,*, P. Pabitha2

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3101-3119, 2021, DOI:10.32604/cmc.2021.016489 - 06 May 2021

    Abstract Parkinson’s disease is a neurogenerative disorder and it is difficult to diagnose as no therapies may slow down its progression. This paper contributes a novel analytic system for Parkinson’s Disease Prediction mechanism using Improved Radial Basis Function Neural Network (IRBFNN). Particle swarm optimization (PSO) with K-means is used to find the hidden neuron’s centers to improve the accuracy of IRBFNN. The performance of RBFNN is seriously affected by the centers of hidden neurons. Conventionally K-means was used to find the centers of hidden neurons. The problem of sensitiveness to the random initial centroid in K-means… More >

  • Open Access

    ARTICLE

    Study on the Improvement of the Application of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise in Hydrology Based on RBFNN Data Extension Technology

    Jinping Zhang1,2, Youlai Jin1, Bin Sun1,*, Yuping Han3, Yang Hong4

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.2, pp. 755-770, 2021, DOI:10.32604/cmes.2021.012686 - 21 January 2021

    Abstract The complex nonlinear and non-stationary features exhibited in hydrologic sequences make hydrological analysis and forecasting difficult. Currently, some hydrologists employ the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) method, a new time-frequency analysis method based on the empirical mode decomposition (EMD) algorithm, to decompose non-stationary raw data in order to obtain relatively stationary components for further study. However, the endpoint effect in CEEMDAN is often neglected, which can lead to decomposition errors that reduce the accuracy of the research results. In this study, we processed an original runoff sequence using the radial basis… More >

Displaying 1-10 on page 1 of 9. Per Page