Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    REVIEW

    Comparative Research Directions of Population Initialization Techniques using PSO Algorithm

    Sobia Pervaiz1, Waqas Haider Bangyal2, Adnan Ashraf3, Kashif Nisar4,*, Muhammad Reazul Haque5, Ag. Asri Bin Ag. Ibrahim4, BS Chowdhry6, Waqas Rasheed7, Joel J. P. C. Rodrigues8,9, Richard Etengu5, Danda B. Rawat10

    Intelligent Automation & Soft Computing, Vol.32, No.3, pp. 1427-1444, 2022, DOI:10.32604/iasc.2022.017304 - 09 December 2021

    Abstract In existing meta-heuristic algorithms, population initialization forms a huge part towards problem optimization. These calculations can impact variety and combination to locate a productive ideal arrangement. Especially, for perceiving the significance of variety and intermingling, different specialists have attempted to improve the presentation of meta-heuristic algorithms. Particle Swarm Optimization (PSO) algorithm is a populace-based, shrewd stochastic inquiry strategy that is motivated by the inherent honey bee swarm food search mechanism. Population initialization is an indispensable factor in the PSO algorithm. To improve the variety and combination factors, rather than applying the irregular circulation for the… More >

  • Open Access

    ARTICLE

    Particle Swarm Optimization with New Initializing Technique to Solve Global Optimization Problems

    Adnan Ashraf1, Abdulwahab Ali Almazroi2, Waqas Haider Bangyal3,*, Mohammed A. Alqarni4

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 191-206, 2022, DOI:10.32604/iasc.2022.015810 - 03 September 2021

    Abstract Particle Swarm Optimization (PSO) is a well-known extensively utilized algorithm for a distinct type of optimization problem. In meta-heuristic algorithms, population initialization plays a vital role in solving the classical problems of optimization. The population’s initialization in meta-heuristic algorithms urges the convergence rate and diversity, besides this, it is remarkably beneficial for finding the efficient and effective optimal solution. In this study, we proposed an enhanced variation of the PSO algorithm by using a quasi-random sequence (QRS) for population initialization to improve the convergence rate and diversity. Furthermore, this study represents a new approach for… More >

Displaying 1-10 on page 1 of 2. Per Page