Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Learning-Related Sentiment Detection, Classification, and Application for a Quality Education Using Artificial Intelligence Techniques

    Samah Alhazmi1,*, Shahnawaz Khan2, Mohammad Haider Syed1

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3487-3499, 2023, DOI:10.32604/iasc.2023.036297 - 15 March 2023

    Abstract Quality education is one of the primary objectives of any nation-building strategy and is one of the seventeen Sustainable Development Goals (SDGs) by the United Nations. To provide quality education, delivering top-quality content is not enough. However, understanding the learners’ emotions during the learning process is equally important. However, most of this research work uses general data accessed from Twitter or other publicly available databases. These databases are generally not an ideal representation of the actual learning process and the learners’ sentiments about the learning process. This research has collected real data from the learners, More >

  • Open Access

    ARTICLE

    A Feature Learning-Based Model for Analyzing Students’ Performance in Supportive Learning

    P. Prabhu1, P. Valarmathie2,*, K. Dinakaran3

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2989-3005, 2023, DOI:10.32604/iasc.2023.028659 - 15 March 2023

    Abstract Supportive learning plays a substantial role in providing a quality education system. The evaluation of students’ performance impacts their deeper insight into the subject knowledge. Specifically, it is essential to maintain the baseline foundation for building a broader understanding of their careers. This research concentrates on establishing the students’ knowledge relationship even in reduced samples. Here, Synthetic Minority Oversampling TEchnique (SMOTE) technique is used for pre-processing the missing value in the provided input dataset to enhance the prediction accuracy. When the initial processing is not done substantially, it leads to misleading prediction accuracy. This research… More >

Displaying 1-10 on page 1 of 2. Per Page