Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Production of Light Fraction-Based Pyrolytic Fuel from Spirulina platensis Microalgae Using Various Low-Cost Natural Catalysts and Insertion

    Indra Mamad Gandidi1,2,*, Sukarni Sukarni3,4, Avita Ayu Permanasari3, Purnami Purnami5, Tuan Amran Tuan Abdullah6, Anwar Johari6, Nugroho Agung Pambudi7,*

    Energy Engineering, Vol.121, No.12, pp. 3635-3648, 2024, DOI:10.32604/ee.2024.054943 - 22 November 2024

    Abstract The use of catalysts has significantly enhanced the yield and quality of in-situ pyrolysis products. However, there is a lack of understanding regarding pyrolysis approaches that utilize several low-cost natural catalysts (LCC) and their placement within the reactor. Therefore, this study aims to examine the effects of various LCC on the in-situ pyrolysis of spirulina platensis microalgae (SPM) and investigate the impact of different types of catalysts. We employed LCC such as zeolite, dolomite, kaolin, and activated carbon, with both layered and uniformly mixed LCC-SPM placements. Each experiment was conducted at a constant temperature of 500°C… More > Graphic Abstract

    Production of Light Fraction-Based Pyrolytic Fuel from <i>Spirulina platensis</i> Microalgae Using Various Low-Cost Natural Catalysts and Insertion

  • Open Access

    PROCEEDINGS

    A Study of High Volume Fraction SiC/Al Composites Prepared by a Novel Hybrid Additive Manufacturing

    Guizhou Liu1,2, Chunze Yan1,2,*, Yusheng Shi1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.013340

    Abstract High-volume-fraction SiC/Al (HVF-SiC/Al) have a wide range of applications in aerospace, optics, automotive and electronic packaging. However, because the hardness, brittleness and wear resistance increase with the increase in the volume fraction, it is difficult for traditional methods such as machining, to process HVF-SiC/Al composites to complex components. Therefore, in this paper, a novel method of the hybrid additive manufacturing is proposed to fabricate HVF-SiC/Al parts with complex structures. The effect of polymer infiltration and pyrolysis (PIP) on microstructure and properties of HVF-SiC/Al composites is investigated. The results show that the mechanical properties of the… More >

  • Open Access

    ARTICLE

    Sustainable Biofuel Production from Brown and Green Macroalgae through the Pyrolysis

    Apip Amrullah1, Widya Fatriasari2, Novia Amalia Sholeha3, Edy Hartulistiyoso4, Obie Farobie4,*

    Journal of Renewable Materials, Vol.12, No.6, pp. 1087-1102, 2024, DOI:10.32604/jrm.2024.050201 - 02 August 2024

    Abstract The escalating demand for energy coupled with environmental concerns necessitates exploring sustainable alternatives to fossil fuels. The study explores the viability of using large ocean-based seaweeds as a source of third-generation biomass, specifically focusing on their conversion to biofuel via the process of pyrolysis. Sargassum plagiophyllum and Ulva lactuca represent prevalent forms of macroalgae, posing significant discharge challenges for coastal regions globally. However, the exploration of their potential for bio-oil generation via pyrolysis remains limited. This study investigates the pyrolysis process of S. plagiophyllum and U. lactuca for biofuel production, aiming to provide valuable insights into their utilization and… More > Graphic Abstract

    Sustainable Biofuel Production from Brown and Green Macroalgae through the Pyrolysis

  • Open Access

    ARTICLE

    Simple and High-Yield Synthesis of a Thinner Layer of Graphenic Carbon from Coconut Shells

    Retno Asih1,*, Haniffudin Nurdiansah2, Mochamad Zainuri1, Deni S. Khaerudini3,4, Angelinus T. Setiawan4, A. Y. Dias4, Pudji Untoro4,5, Ahmad Sholih1, Darminto1,*

    Journal of Renewable Materials, Vol.12, No.5, pp. 969-979, 2024, DOI:10.32604/jrm.2024.049097 - 17 July 2024

    Abstract Biomass has become of recent interest as a raw material for ‘green’ graphenic carbon (GC) since it promotes an environmentally friendly approach. Here, we investigate a single pyrolysis route to synthesize GC from coconut shells which provides a simple method and can produce a high yield, thus being convenient for large-scale production. The pyrolysis involves a stepped holding process at 350°C for 1 h and at 650°C or 900°C for 3 h. The GC sample resulted at the 900°C pyrolysis has a thinner sheet, a less porous structure, a higher C/O ratio, and an enhanced More > Graphic Abstract

    Simple and High-Yield Synthesis of a Thinner Layer of Graphenic Carbon from Coconut Shells

  • Open Access

    REVIEW

    Advanced Thermochemical Conversion Approaches for Green Hydrogen Production from Crop Residues

    Omojola Awogbemi*, Ayotunde Adigun Ojo, Samson Adedayo Adeleye

    Journal of Renewable Materials, Vol.12, No.1, pp. 1-28, 2024, DOI:10.32604/jrm.2023.045822 - 23 January 2024

    Abstract The huge volumes of crop residues generated during the production, processing, and consumption of farm products constitute an ecological nuisance when ineffectively managed. The conversion of crop residues to green hydrogen is one of the sustainable management strategies for ubiquitous crop residues. Production of green hydrogen from crop residue sources will contribute to deepening access to clean and affordable energy, mitigating climate change, and ensuring environmental sustainability. However, the deployment of conventional thermochemical technologies for the conversion of crop residues to green hydrogen is costly, requires long residence time, produces low-quality products, and therefore needs… More >

  • Open Access

    ARTICLE

    Naturally Nitrogen-Doped Biochar Made from End-of-Life Wood Panels for SO2 Gas Depollution

    Hamdi Hachicha1,2, Mamadou Dia2, Hassine Bouafif2, Ahmed Koubaa1, Mohamed Khlif3, Flavia Lega Braghiroli1,*

    Journal of Renewable Materials, Vol.11, No.11, pp. 3807-3829, 2023, DOI:10.32604/jrm.2023.029454 - 31 October 2023

    Abstract Reconstituted wood panels have several advantages in terms of ease of manufacturing, but their shorter life span results in a huge amount of reconstituted wood panels being discarded in sorting centers yearly. Currently, the most common approach for dealing with this waste is incineration. In this study, reconstituted wood panels were converted into activated biochar through a two-step thermochemical process: (i) biochar production using pilot scale fast pyrolysis at 250 kg/h and 450°C; and (ii) a physical activation at three temperatures (750°C, 850°C and 950°C) using an in-house activation furnace (1 kg/h). Results showed that… More > Graphic Abstract

    Naturally Nitrogen-Doped Biochar Made from End-of-Life Wood Panels for SO<sub>2</sub> Gas Depollution

  • Open Access

    PROCEEDINGS

    Multi-physics Simulation of Tar-Rich Coal in-situ Pyrolysis in the Fractured Porous Zone with Multi-Region Homogenization Treatment

    Qianhao Ye1, Mingjie Li1, Jingyuan Hao1, Zibo Huang1, Jinjia Wei1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.08826

    Abstract The macroscopic tar-rich coal in-situ pyrolysis (TCISP) multi-physics simulation is conducted, in the fractured porous zone, by coupling heat transfer, fluid flow, and chemical reaction. A novel TCISP pattern of gas injection between fractured zones is proposed, by treating the fractured porous zone as a homogeneous porosity gradient descending region. In this case, nearly 11500 kg of oil can be produced within 6 months from a 10*10*1 m3 area. The influence of the fractured zone and porosity are investigated. Results indicated that gas injection between fractured zones is more conducive to rapid production, compared with More >

  • Open Access

    ARTICLE

    Enhancing Hydrocarbon-Rich Bio-Oil Production via Catalytic Pyrolysis Fortified with Microorganism Pretreatment

    Jiapeng Wang1, Bo Zhang1,*, Haoqiang Cheng1, Zhixiang Xu2

    Journal of Renewable Materials, Vol.11, No.10, pp. 3595-3612, 2023, DOI:10.32604/jrm.2023.030005 - 10 August 2023

    Abstract A new method of pretreatment of corn straw with Phanerochaete chrysosporium combined with pyrolysis was proposed to improve the quality of bio-oil. The characterization results demonstrated that microbial pretreatment was an effective method to decrease the lignin, which can achieve a maximum removal rate of 44.19%. Due to the destruction of biomass structure, the content of alkali metal and alkaline earth metal is reduced. Meanwhile, the depolymerized biomass structure created better pyrolysis conditions to promote the pyrolysis efficiency, increase the average decomposition rate of pyrolysis and reduce the residue. In fast pyrolysis, because of the enrichment… More > Graphic Abstract

    Enhancing Hydrocarbon-Rich Bio-Oil Production via Catalytic Pyrolysis Fortified with Microorganism Pretreatment

  • Open Access

    ARTICLE

    Spatio-Temporal Characteristics of Heat Transfer of Methanation in Fluidized Bed for Pyrolysis and Gasification Syngas of Organic Solid Waste

    Danyang Shao1, Xiaojia Wang1,*, Delu Chen1, Fengxia An1,2

    Journal of Renewable Materials, Vol.11, No.10, pp. 3659-3680, 2023, DOI:10.32604/jrm.2023.029220 - 10 August 2023

    Abstract Methanation is an effective way to efficiently utilize product gas generated from the pyrolysis and gasification of organic solid wastes. To deeply study the heat transfer and mass transfer mechanisms in the reactor, a successful three-dimensional comprehensive model has been established. Multiphase flow behavior and heat transfer mechanisms were investigated under reference working conditions. Temperature is determined by the heat release of the reaction and the heat transfer of the gas-solid flow. The maximum temperature can reach 951 K where the catalyst gathers. In the simulation, changes in the gas inlet velocity and catalyst flow… More >

  • Open Access

    ARTICLE

    Catalytic Pyrolysis of Soybean Oil with CaO/Bio-Char Based Catalyst to Produce High Quality Biofuel

    Lujiang Xu, Geliang Xie, Xianjun Zhou, Yucheng Liu, Zhen Fang*

    Journal of Renewable Materials, Vol.10, No.12, pp. 3107-3118, 2022, DOI:10.32604/jrm.2022.020691 - 14 July 2022

    Abstract In this paper, CaO/bio-char was synthesized by directly co-pyrolysis of Ca(OH)2 and rice straw, and used as catalyst to catalytic pyrolysis of soybean oil to produce high quality biofuel. In this co-pyrolysis process, CaO particles has been successfully embedded on the bio-char surface. During the catalytic pyrolysis process, CaO/bio-char showed a good catalytic performance on the deoxygenation of soybean oil. Pyrolysis temperature affected the pyrolysis reactions and pyrolytic products distributions dramatically, higher pyrolysis temperature lead to seriously cracking reactions, lower bio-oil yield and higher gases yield, and lower pyrolysis temperature lead to higher bio-oil yield with More > Graphic Abstract

    Catalytic Pyrolysis of Soybean Oil with CaO/Bio-Char Based Catalyst to Produce High Quality Biofuel

Displaying 1-10 on page 1 of 24. Per Page