Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Facial Expression Recognition Based on the Fusion of Infrared and Visible Image

    Jiancheng Zou1, Jiaxin Li1,*, Juncun Wei1, Zhengzheng Li1, Xin Yang2

    Journal on Artificial Intelligence, Vol.3, No.3, pp. 123-134, 2021, DOI:10.32604/jai.2021.027069 - 25 January 2022

    Abstract Facial expression recognition is a research hot spot in the fields of computer vision and pattern recognition. However, the existing facial expression recognition models are mainly concentrated in the visible light environment. They have insufficient generalization ability and low recognition accuracy, and are vulnerable to environmental changes such as illumination and distance. In order to solve these problems, we combine the advantages of the infrared and visible images captured simultaneously by array equipment our developed with two infrared and two visible lens, so that the fused image not only has the texture information of visible… More >

  • Open Access

    ARTICLE

    A Novel Method of Heart Failure Prediction Based on DPCNNXGBOOST Model

    Yuwen Chen1, 2, 3, *, Xiaolin Qin1, 3, Lige Zhang1, 3, Bin Yi4

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 495-510, 2020, DOI:10.32604/cmc.2020.011278 - 23 July 2020

    Abstract The occurrence of perioperative heart failure will affect the quality of medical services and threaten the safety of patients. Existing methods depend on the judgment of doctors, the results are affected by many factors such as doctors’ knowledge and experience. The accuracy is difficult to guarantee and has a serious lag. In this paper, a mixture prediction model is proposed for perioperative adverse events of heart failure, which combined with the advantages of the Deep Pyramid Convolutional Neural Networks (DPCNN) and Extreme Gradient Boosting (XGBOOST). The DPCNN was used to automatically extract features from patient’s More >

Displaying 1-10 on page 1 of 2. Per Page