Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (82)
  • Open Access

    ARTICLE

    Numerical Simulation and Entropy Production Analysis of Centrifugal Pump with Various Viscosity

    Zhenjiang Zhao1, Lei Jiang1, Ling Bai2,*, Bo Pan3, Ling Zhou1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1111-1136, 2024, DOI:10.32604/cmes.2024.055399 - 27 September 2024

    Abstract The fluid’s viscosity significantly affects the performance of a centrifugal pump. The entropy production method and leakage are employed to analyze the performance changes under various viscosities by numerical simulation and validated by experiments. The results showed that increasing viscosity reduces both the pump head and efficiency. In addition, the optimal operating point shifts to the left. Leakage is influenced by vortex distribution in the front chamber and boundary layer thickness in wear-ring clearance, leading to an initial increase and subsequent decrease in leakage with increasing viscosity. The total entropy production inside the pump rises More >

  • Open Access

    ARTICLE

    Transient Experiments on a Prototype Pump with an Atypical Open Impeller for Different Discharge Valve Openings

    Xiao Sun1, Huifan Huang1, Yuliang Zhang2, Lianghuai Tong3,*, Xiaowei Xu2, Xiaoqi Jia4, Litao Ou5

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.10, pp. 2251-2264, 2024, DOI:10.32604/fdmp.2024.050997 - 23 September 2024

    Abstract In order to obtain the transient characteristics of a low-speed centrifugal pump during the start-up and shutdown stages, dedicated experimental tests were conducted with eight different valve opening conditions. The Pearson correlation coefficient was used to reveal the linear correlation between variables. According to the results, the stable rotational speed decreases with increasing valve opening (rotational speed decreases from approximately 1472 to 1453 r/min), while the stable shaft power exhibits an increasing trend (shaft power increases from approximately 0.242 to 0.390 kW). The stable time and zeroing time of each parameter during start-up and shutdown More >

  • Open Access

    ARTICLE

    Assessment of Low Global Warming Potential Refrigerants for Waste Heat Recovery in Data Center with On-Chip Two-Phase Cooling Loop

    Yuming Zhao1, Jing Wang1, Bin Sun2, Zhenshang Wang1, Huashan Li2, Jiongcong Chen2,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.4, pp. 1171-1188, 2024, DOI:10.32604/fhmt.2024.054594 - 30 August 2024

    Abstract Data centers (DCs) are highly energy-intensive facilities, where about 30%–50% of the power consumed is attributable to the cooling of information technology equipment. This makes liquid cooling, especially in two-phase mode, as an alternative to air cooling for the microprocessors in servers of interest. The need to meet the increased power density of server racks in high-performance DCs, along with the push towards lower global warming potential (GWP) refrigerants due to environmental concerns, has motivated research on the selection of two-phase heat transfer fluids for cooling servers while simultaneously recovering waste heat. With this regard,… More >

  • Open Access

    ARTICLE

    Transient Analysis of a Reactor Coolant Pump Rotor Seizure Nuclear Accident

    Mengdong An1, Weiyuan Zhong1, Wei Xu2, Xiuli Wang1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1331-1349, 2024, DOI:10.32604/fdmp.2023.046604 - 27 June 2024

    Abstract The reactor coolant pump (RCP) rotor seizure accident is defined as a short-time seizure of the RCP rotor. This event typically leads to an abrupt flow decrease in the corresponding loop and an ensuing reactor and turbine trip. The significant reduction of core coolant flow while the reactor is being operated at full load can have very negative consequences. This potentially dangerous event is typically characterized by a complex transient behavior in terms of flow conditions and energy transformation, which need to be analyzed and understood. This study constructed transient flow and rotational speed mathematical More > Graphic Abstract

    Transient Analysis of a Reactor Coolant Pump Rotor Seizure Nuclear Accident

  • Open Access

    ARTICLE

    Optimal Design of High-Speed Partial Flow Pumps using Orthogonal Tests and Numerical Simulations

    Jiaqiong Wang1,2, Tao Yang1, Chen Hu1, Yu Zhang3,*, Ling Zhou1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1203-1218, 2024, DOI:10.32604/fdmp.2023.045825 - 27 June 2024

    Abstract To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm, special attention was paid to the first and second stage impeller guide vanes. Moreover, the impeller blade outlet width, impeller inlet diameter, blade inclination angle, and number of blades were considered for orthogonal tests. Accordingly, nine groups of design solutions were formed, and then used as a basis for the execution of numerical simulations (CFD) aimed at obtaining the efficiency values and heads for each design solution group. The More >

  • Open Access

    ARTICLE

    A Numerical Study on the Effect of the Backflow Hole Position on the Performances of a Self-Priming Pump

    Dongwei Wang1,*, Lijian Cao1, Weidong Wang2, Jiajun Hu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 1103-1122, 2024, DOI:10.32604/fdmp.2023.042654 - 07 June 2024

    Abstract A self-priming pump is a centrifugal pump that has the ability to prime itself. Typically, its performance depends on the configuration of its reflux hole. In this study, the ANSYS FLUENT software is used to investigate the effects of three different radial positions of the reflux hole on gas-liquid two-phase distribution, pressure pulsation, and imp during self-priming. The research results indicate that: (1) The effective channel size for the reflux liquid to enter the volute varies depending on the location of the reflux hole. The effect of the impeller rotation on the reflux liquid becomes… More >

  • Open Access

    ARTICLE

    Blade Wrap Angle Impact on Centrifugal Pump Performance: Entropy Generation and Fluid-Structure Interaction Analysis

    Hayder Kareem Sakran1,2, Mohd Sharizal Abdul Aziz1,*, Chu Yee Khor3

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 109-137, 2024, DOI:10.32604/cmes.2024.047245 - 16 April 2024

    Abstract The centrifugal pump is a prevalent power equipment widely used in different engineering patterns, and the impeller blade wrap angle significantly impacts its performance. A numerical investigation was conducted to analyze the influence of the blade wrap angle on flow characteristics and energy distribution of a centrifugal pump evaluated as a low specific speed with a value of 69. This study investigates six impeller models that possess varying blade wrap angles (95°, 105°, 115°, 125°, 135°, and 145°) that were created while maintaining the same volute and other geometrical characteristics. The investigation of energy loss… More > Graphic Abstract

    Blade Wrap Angle Impact on Centrifugal Pump Performance: Entropy Generation and Fluid-Structure Interaction Analysis

  • Open Access

    ARTICLE

    Experimental Analysis of Radial Centrifugal Pump Shutdown

    Xiao Sun1, Jiangbo Tong1, Yuliang Zhang2,*, Haibing Cai3, Wen Zhou4, Xiaoqi Jia5, Litao Ou6

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 725-737, 2024, DOI:10.32604/fdmp.2023.045541 - 28 March 2024

    Abstract Centrifugal pumps are widely used in the metallurgy, coal, and building sectors. In order to study the hydraulic characteristics of a closed impeller centrifugal pump during its shutdown in the so-called power frequency and frequency conversion modes, experiments were carried to determine the characteristic evolution of parameters such as speed, inlet and outlet pressure, head, flow rate and shaft power. A quasi-steady-state method was also used to further investigate these transient behaviors. The results show that, compared to the power frequency input, the performance parameter curves for the frequency conversion input are less volatile and More >

  • Open Access

    ARTICLE

    Coupled Numerical Simulation of Electromagnetic and Flow Fields in a Magnetohydrodynamic Induction Pump

    He Wang1,*, Ying He2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 889-899, 2024, DOI:10.32604/fdmp.2023.042728 - 28 March 2024

    Abstract Magnetohydrodynamic (MHD) induction pumps are contactless pumps able to withstand harsh environments. The rate of fluid flow through the pump directly affects the efficiency and stability of the device. To explore the influence of induction pump settings on the related delivery speed, in this study, a numerical model for coupled electromagnetic and flow field effects is introduced and used to simulate liquid metal lithium flow in the induction pump. The effects of current intensity, frequency, coil turns and coil winding size on the velocity of the working fluid are analyzed. It is shown that the More >

  • Open Access

    ARTICLE

    Research on Cavitation Characteristics and Influencing Factors of Herringbone Gear Pump

    Jinlong Yang, Kwang-Hee Lee, Chul-Hee Lee*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2917-2946, 2024, DOI:10.32604/cmes.2024.046740 - 11 March 2024

    Abstract Cavitation is a common issue in pumps, causing a decrease in pump head, a fall in volumetric efficiency, and an intensification of outlet flow pulsation. It is one of the main hazards that affect the regular operation of the pump. Research on pump cavitation mainly focuses on mixed flow pumps, jet pumps, external spur gear pumps, etc. However, there are few cavitation studies on external herringbone gear pumps. In addition, pumps with different working principles significantly differ in the flow and complexity of the internal flow field. Therefore, it is urgent to study the cavitation… More >

Displaying 1-10 on page 1 of 82. Per Page