Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Optimization Scheduling of Hydrogen-Coupled Electro-Heat-Gas Integrated Energy System Based on Generative Adversarial Imitation Learning

    Baiyue Song1, Chenxi Zhang2, Wei Zhang2,*, Leiyu Wan2

    Energy Engineering, Vol.122, No.12, pp. 4919-4945, 2025, DOI:10.32604/ee.2025.068971 - 27 November 2025

    Abstract Hydrogen energy is a crucial support for China’s low-carbon energy transition. With the large-scale integration of renewable energy, the combination of hydrogen and integrated energy systems has become one of the most promising directions of development. This paper proposes an optimized scheduling model for a hydrogen-coupled electro-heat-gas integrated energy system (HCEHG-IES) using generative adversarial imitation learning (GAIL). The model aims to enhance renewable-energy absorption, reduce carbon emissions, and improve grid-regulation flexibility. First, the optimal scheduling problem of HCEHG-IES under uncertainty is modeled as a Markov decision process (MDP). To overcome the limitations of conventional deep… More >

  • Open Access

    ARTICLE

    Two-Stage Client Selection Scheme for Blockchain-Enabled Federated Learning in IoT

    Xiaojun Jin1, Chao Ma2,*, Song Luo2, Pengyi Zeng1, Yifei Wei1

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2317-2336, 2024, DOI:10.32604/cmc.2024.055344 - 18 November 2024

    Abstract Federated learning enables data owners in the Internet of Things (IoT) to collaborate in training models without sharing private data, creating new business opportunities for building a data market. However, in practical operation, there are still some problems with federated learning applications. Blockchain has the characteristics of decentralization, distribution, and security. The blockchain-enabled federated learning further improve the security and performance of model training, while also expanding the application scope of federated learning. Blockchain has natural financial attributes that help establish a federated learning data market. However, the data of federated learning tasks may be… More >

Displaying 1-10 on page 1 of 2. Per Page