Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (258)
  • Open Access

    ARTICLE

    Label-free quantitative proteomics analysis models in vivo and in vitro reveal key proteins and potential roles in sciatic nerve injury

    YANG GU1,#,*, MINGGUANG BI2,#, DEHUI CHEN3, NING NI4, JIANMING CHEN1,*

    BIOCELL, Vol.47, No.9, pp. 2069-2080, 2023, DOI:10.32604/biocell.2023.029989

    Abstract Background: The underlying mechanism of sciatic nerve injury (SNI) is a common motor functional disorder, necessitates further research. Methods: A rat model of SNI was established, with the injury group subjected to compressive injury of the right sciatic nerve exposed at the midpoint of the thigh and the sham surgery group undergoing the same surgical procedure. An oxygen-glucose deprivation model was employed to simulate in vitro SNI in PC12 cells. Following data acquisition and quality control, differentially expressed proteins (DEPs) in each model were identified through differential analysis, and enrichment analysis was used to explore the potential functions and pathways… More >

  • Open Access

    ARTICLE

    Silencing ribosomal protein L4 enhances the inhibitory effects of triptolide on non-small cell lung cancer cells by disrupting the mouse double minute 2 protein–P53 tumor suppressor pathway

    NAN TANG1,#, YAJING ZHAN1,#, JIAYAN MAO2,#, ANKANG YIN1, WEI WANG3,*, JUAN WANG3,*

    BIOCELL, Vol.47, No.9, pp. 2009-2026, 2023, DOI:10.32604/biocell.2023.029269

    Abstract Non-small cell lung cancer (NSCLC) is a malignant tumor with high incidence worldwide. Triptolide (TP), extracted from Tripterygium wilfordii Hook F, exhibits potent broad-spectrum antitumor activity. Although some mechanisms through which TP inhibits NSCLC are well understood, those that involve ribosomal proteins remain yet to be understood. In this study, the transcriptome and proteome were integrated and analyzed. Our data indicated ribosomal protein L4 (RPL4) to be a core hub protein in the protein-protein interaction network. RPL4 is overexpressed in NSCLC tissues and cells. Transfection with siRPL4 or TP treatment alone arrested the cell cycle in the G1 phase, induced… More > Graphic Abstract

    Silencing ribosomal protein L4 enhances the inhibitory effects of triptolide on non-small cell lung cancer cells by disrupting the mouse double minute 2 protein–P53 tumor suppressor pathway

  • Open Access

    ARTICLE

    Classification of Human Protein in Multiple Cells Microscopy Images Using CNN

    Lina Al-joudi, Muhammad Arif*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1763-1780, 2023, DOI:10.32604/cmc.2023.039413

    Abstract The subcellular localization of human proteins is vital for understanding the structure of human cells. Proteins play a significant role within human cells, as many different groups of proteins are located in a specific location to perform a particular function. Understanding these functions will help in discovering many diseases and developing their treatments. The importance of imaging analysis techniques, specifically in proteomics research, is becoming more prevalent. Despite recent advances in deep learning techniques for analyzing microscopy images, classification models have faced critical challenges in achieving high performance. Most protein subcellular images have a significant class imbalance. We use oversampling… More >

  • Open Access

    ARTICLE

    Developing a Breast Cancer Resistance Protein Substrate Prediction System Using Deep Features and LDA

    Mehdi Hassan1,2, Safdar Ali3, Jin Young Kim2,*, Muhammad Sanaullah4, Hani Alquhayz5, Khushbakht Safdar6

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1643-1663, 2023, DOI:10.32604/cmc.2023.038578

    Abstract Breast cancer resistance protein (BCRP) is an important resistance protein that significantly impacts anticancer drug discovery, treatment, and rehabilitation. Early identification of BCRP substrates is quite a challenging task. This study aims to predict early substrate structure, which can help to optimize anticancer drug development and clinical diagnosis. For this study, a novel intelligent approach-based methodology is developed by modifying the ResNet101 model using transfer learning (TL) for automatic deep feature (DF) extraction followed by classification with linear discriminant analysis algorithm (TLRNDF-LDA). This study utilized structural fingerprints, which are exploited by DF contrary to conventional molecular descriptors. The proposed in… More >

  • Open Access

    REVIEW

    Molecular dynamics-driven exploration of peptides targeting SARS-CoV-2, with special attention on ACE2, S protein, Mpro, and PLpro: A review

    MOHAMAD ZULKEFLEE SABRI1, JOANNA BOJARSKA2, FAI-CHU WONG3,4, TSUN-THAI CHAI3,4,*

    BIOCELL, Vol.47, No.8, pp. 1727-1742, 2023, DOI:10.32604/biocell.2023.029272

    Abstract Molecular dynamics (MD) simulation is a computational technique that analyzes the movement of a system of particles over a given period. MD can provide detailed information about the fluctuations and conformational changes of biomolecules at the atomic level over time. In recent years, MD has been widely applied to the discovery of peptides and peptide-like molecules that may serve as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibitors. This review summarizes recent advances in such explorations, focusing on four protein targets: angiotensin-converting enzyme 2 (ACE2), spike protein (S protein), main protease (Mpro), and papain-like protease (PLpro). These four proteins are… More > Graphic Abstract

    Molecular dynamics-driven exploration of peptides targeting SARS-CoV-2, with special attention on ACE2, S protein, M<sup>pro</sup>, and PL<sup>pro</sup>: A review

  • Open Access

    ARTICLE

    Changes in intracellular and extracellular proteins after ERGIC3 knockdown in lung cancer: Proteins interacting with ERGIC3, HORN, and FLNA

    WEI ZHAI1,2, XIANG ZHENG2, MENGYUAN LIU2, QIURONG ZHAO2, YUSHU ZHANG2, YUQING LUO3, SHANSHAN FENG3, JINJING WANG3, XUEYING LI2,*, MINGSONG WU1,*

    BIOCELL, Vol.47, No.8, pp. 1821-1833, 2023, DOI:10.32604/biocell.2023.027175

    Abstract Objective: Endoplasmic reticulum-Golgi intermediate compartment 3 (ERGIC3) promotes cell proliferation and metastasis in lung cancer, but its molecular mechanism is unclear. Methods: The GLC-82 cells were randomly divided into the ERGIC3i group and the negative control group. The cells were transfected with ERGIC3 siRNA or control siRNA in the groups, respectively. The ERGIC3-interacting proteins expressed in cells or extracellularly were isolated by the immunoprecipitation method and detected by isobaric tags for relative and absolute quantitation and liquid chromatography-tandem mass spectrometry. The differentially expressed proteins were determined by bioinformatic methods. Results: After ERGIC3 knockdown, 88 extracellular differentially expressed proteins, 41 up-regulated… More >

  • Open Access

    ARTICLE

    MiR-520f-3p inhibits epithelial-mesenchymal transition of colorectal cancer cells by targeting Yes-associated protein 1

    LIJUN JIANG1, WENMIN JI1, YAJIE GONG2, JIAJUN LI2, JINCHUN LIU1,*

    BIOCELL, Vol.47, No.8, pp. 1803-1810, 2023, DOI:10.32604/biocell.2023.029516

    Abstract Background: Colorectal cancer (CRC) is one of the most common malignancies. Early diagnosis is the key to effective treatment of CRC. Since microRNAs (miRNAs) can be used as biomarkers of CRC, the objective of this work was to examine the effect of miR-520f-3p, which targets YAP1 (Yes-associated protein 1), on the ability of CRC cells to proliferate, invade, migrate, and undergo epithelial-mesenchymal transition (EMT). Methods: A miR-520f-3p mimic was used to overexpress miR-520f-3p in HT29 cells. To establish the tumor-bearing mouse model, transfected HT29 cells were subcutaneously implanted into BALB/c-nu nude mice, and YAP1 and miR-520f-3p levels were determined using… More > Graphic Abstract

    MiR-520f-3p inhibits epithelial-mesenchymal transition of colorectal cancer cells by targeting Yes-associated protein 1

  • Open Access

    ARTICLE

    Isolation and characterization of β-transducin repeat-containing protein ligands screened using a high-throughput screening system

    XINTONG LIU1,2,3, EMIKO SANADA1,3,4, JIANG LI5, XIAOMENG LI6, HIROYUKI OSADA1,4,7,*, NOBUMOTO WATANABE1,2,3,*

    Oncology Research, Vol.31, No.5, pp. 645-654, 2023, DOI:10.32604/or.2023.030240

    Abstract β-transducin repeat-containing protein (β-TrCP) is an F-box protein subunit of the E3 Skp1-Cullin-F box (SCF) type ubiquitin-ligase complex, and provides the substrate specificity for the ligase. To find potent ligands of β-TrCP useful for the proteolysis targeting chimera (PROTAC) system using β-TrCP in the future, we developed a high-throughput screening system for small molecule β-TrCP ligands. We screened the chemical library utilizing the system and obtained several hit compounds. The effects of the hit compounds on in vitro ubiquitination activity of SCFβ-TrCP1 and on downstream signaling pathways were examined. Hit compounds NPD5943, NPL62020-01, and NPL42040-01 inhibited the TNFα-induced degradation of… More > Graphic Abstract

    Isolation and characterization of β-transducin repeat-containing protein ligands screened using a high-throughput screening system

  • Open Access

    ARTICLE

    Transformer 2β regulates the alternative splicing of cell cycle regulatory genes to promote the malignant phenotype of ovarian cancer

    TING ZHOU1,#, PEIYING FU1,#, DONG CHEN2, RONGHUA LIU1,*

    Oncology Research, Vol.31, No.5, pp. 769-785, 2023, DOI:10.32604/or.2023.030166

    Abstract Late-stage ovarian cancer (OC) has a poor prognosis and a high metastasis rate, but the underlying molecular mechanism is unclear. RNA binding proteins (RBPs) play important roles in posttranscriptional regulation in the contexts of neoplasia and tumor metastasis. In this study, we explored the molecular functions of a canonical RBP, Transformer 2β homolog (TRA2B), in cancer cells. TRA2B knockdown in HeLa cells and subsequent whole-transcriptome RNA sequencing (RNA-seq) analysis revealed the TRA2B-regulated alternative splicing (AS) profile. We disrupted TRA2B expression in epithelial OC cells and performed a series of experiments to confirm the resulting effects on OC cell proliferation, apoptosis… More >

  • Open Access

    REVIEW

    Scaffold proteins of cancer signaling networks: The paradigm of FK506 binding protein 51 (FKBP51) supporting tumor intrinsic properties and immune escape

    LAURA MARRONE1, MASSIMO D’AGOSTINO1, CAROLINA GIORDANO2, VALERIA DI GIACOMO1, SIMONA URZINI1, CHIARA MALASOMMA1, MARIA PAOLA GAMMELLA1, MARTINA TUFANO1, SIMONA ROMANO1,*, MARIA FIAMMETTA ROMANO1,*

    Oncology Research, Vol.31, No.4, pp. 423-436, 2023, DOI:10.32604/or.2023.028392

    Abstract Scaffold proteins are crucial regulators of signaling networks, and their abnormal expression may favor the development of tumors. Among the scaffold proteins, immunophilin covers a unique role as ‘protein-philin’ (Greek ‘philin’ = friend) that interacts with proteins to guide their proper assembly. The growing list of human syndromes associated with the immunophilin defect underscores the biological relevance of these proteins that are largely opportunistically exploited by cancer cells to support and enable the tumor’s intrinsic properties. Among the members of the immunophilin family, the FKBP5 gene was the only one identified to have a splicing variant. Cancer cells impose unique… More > Graphic Abstract

    Scaffold proteins of cancer signaling networks: The paradigm of FK506 binding protein 51 (FKBP51) supporting tumor intrinsic properties and immune escape

Displaying 11-20 on page 2 of 258. Per Page