Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    PROCEEDINGS

    Progressive Damage Analysis of 3D Woven Composite SENT Test Using a Ternary Model

    Wushuai Liu1, Wu Xu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012893

    Abstract It is of great significance for improving the in-plane fracture toughness of 3D woven composite (3DWC) to study the failure mechanism of a single edge notch tension (SENT) test. It requires a relatively high computational cost to establish the SENT model based on conformal modeling method. A SENT is established using a proposed ternary model. The matrix cracking, yarn rupture, and debonding at the yarn/matrix interface are involved in the ternary model. Based on the developed SENT model, the progressive damage initiation and evolution of 3DWC SENT are predicted. The load-displacement curves and damage of More >

  • Open Access

    ARTICLE

    Research on Fatigue Damage Behavior of Main Beam Sub-Structure of Composite Wind Turbine Blade

    Haixia Kou1,*, Bowen Yang1, Xuyao Zhang2, Xiaobo Yang1, Haibo Zhao1

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 277-297, 2024, DOI:10.32604/sdhm.2024.045023 - 15 May 2024

    Abstract Given the difficulty in accurately evaluating the fatigue performance of large composite wind turbine blades (referred to as blades), this paper takes the main beam structure of the blade with a rectangular cross-section as the simulation object and establishes a composite laminate rectangular beam structure that simultaneously includes the flange, web, and adhesive layer, referred to as the blade main beam sub-structure specimen, through the definition of blade sub-structures. This paper examines the progressive damage evolution law of the composite laminate rectangular beam utilizing an improved 3D Hashin failure criterion, cohesive zone model, B-K failure More > Graphic Abstract

    Research on Fatigue Damage Behavior of Main Beam Sub-Structure of Composite Wind Turbine Blade

  • Open Access

    ARTICLE

    Damage Failure Analysis of Z-Pins Reinforced Composite Adhesively Bonded Single-Lap Joint

    Yinhuan Yang1,*, Manfeng Gong1, Xiaoqun Xia1, Yuling Tang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.3, pp. 1239-1249, 2021, DOI:10.32604/cmes.2021.014129 - 19 February 2021

    Abstract In order to study the mechanical properties of Z-pins reinforced laminated composite single-lap adhesively bonded joint under un-directional static tensile load, damage failure analysis of the joint was carried out by means of test and numerical simulation. The failure mode and mechanism of the joint were analyzed by tensile failure experiments. According to the experimental results, the joint exhibits mixed failure, and the ultimate failure is Z-pins pulling out of the adherend. In order to study the failure mechanism of the joint, the finite element method is used to predict the failure strength. The numerical… More >

  • Open Access

    ARTICLE

    Progressive Damage Analysis (PDA) of Carbon Fiber Plates with Out-of-Plane Fold under Pressure

    Tao Zhang, Jinglan Deng*, Jihui Wang

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.2, pp. 545-559, 2020, DOI:10.32604/cmes.2020.09536 - 20 July 2020

    Abstract The out-of-plane fold is a common defect of composite materials during the manufacturing process and will greatly affect the compressive strength as well as the service life. Making it of great importance to investigate the influence of out-of-plane defects to the compressive strength of laminate plates of composite materials, and to understand the patterns of defect evolution. Therefore, the strip method is applied in this article to create out-of-plane defects with different aspect ratios in laminated plates of composite materials, and a compressive performance test is conducted to quantify the influence of out-of-plane defects. The… More >

  • Open Access

    ARTICLE

    Model of CEL for 3D Elements in PDMs of Unidirectional Composite Structures

    Tianliang Qin1, Libin Zhao2,3,*, Jifeng Xu1, Fengrui Liu2,3,4, Jianyu Zhang5

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.1, pp. 157-176, 2019, DOI:10.31614/cmes.2019.04379

    Abstract Progressive damage models (PDMs) have been increasingly used to simulate the failure process of composite material structures. To accurately simulate the damage in each ply, 3D PDMs of composite materials have received more attention recently. A characteristic element length (CEL), which is an important dimensional parameter of PDMs for composite materials, is quite difficult to obtain for 3D elements, especially considering the crack directions during damage propagation. In this paper, CEL models for 3D elements in PDMs of unidirectional composite structures are presented, and their approximate formulae are deduced. The damage in unidirectional composite materials… More >

  • Open Access

    ARTICLE

    Effects of Stacking Sequence and Impactor Diameter on Impact Damage of Glass Fiber Reinforced Aluminum Alloy Laminate

    Zhengong Zhou1, Shuang Tian1,2, Jiawei Zhang3

    CMC-Computers, Materials & Continua, Vol.52, No.2, pp. 105-121, 2016, DOI:10.3970/cmc.2016.052.105

    Abstract The methods of numerical simulation and test are combined to analyze the impact behavior of glass fiber reinforced aluminum alloy laminate (GLARE). A new failure criteria is proposed to obtain the impact failure of GLARE, and combined with material progressive damage method by writing code of LS-DYNA. Low velocity impact test of GLARE is employed to validate the feasibility of the finite element model established. The simulation results have been shown that progressive damage finite element model established is reliable. Through the application of the finite element model established, the delamination of GLARE evolution progress More >

  • Open Access

    ARTICLE

    Intra-laminar Damage Evolution in a Composite Grid Structure Representative Volume Element under Compression Load

    A. Riccio1, F. Caputo1, N. Tessitore2

    Structural Durability & Health Monitoring, Vol.9, No.1, pp. 43-66, 2013, DOI:10.32604/sdhm.2013.009.043

    Abstract In this paper the mechanical behavior of composites grid structures has been numerically investigated. The evolution of fibers and matrix cracking has been simulated by adopting a progressive damage approach. The Hashin failure criteria and ply properties degradation rules have been adopted to simulate the degradation at ply level. Non-linear analyses on a Representative Volume Element of the composite grid structure have been performed to account for its compression behavior. More >

  • Open Access

    ARTICLE

    Damage Propagation in Composite Structures using an Embedded Global-Local Approach

    A. Riccio1, M. Zarrelli2, F. Caputo1

    Structural Durability & Health Monitoring, Vol.9, No.1, pp. 21-42, 2013, DOI:10.32604/sdhm.2013.009.021

    Abstract In the present paper a three-dimensional Progressive Damage Approach (PDA) for laminated composites will be presented. This approach is based on the use of a progressive damage finite element with the geometrically non-linear finite element formulation for stress calculation. The FEM element has been integrated with Hashin's failure criteria to split fibre and matrix failure modes and to simulate stiffness degradation within each ply by means of the Ply Discount Method (PDM). FEM code previsions, in the case of complex structures with different mesh densities and element types, were compared with the results obtained using More >

  • Open Access

    ARTICLE

    Investigation of Progressive Damage and Fracture in Laminated Composites Using the Smeared Crack Approach

    Christian Heinrich1, Anthony M. Waas2

    CMC-Computers, Materials & Continua, Vol.35, No.2, pp. 155-181, 2013, DOI:10.3970/cmc.2013.035.155

    Abstract The smeared crack approach (SCA) is revisited to describe post-peak softening in laminated composite materials. First, predictions of the SCA are compared against linear elastic fracture mechanics (LEFM) based predictions for the debonding of an adhesively bonded double cantilever beam. A sensitivity analysis is performed to establish the influence of element size and cohesive strength on the load-deflection response. The SCA is further validated by studying the in-plane fracture of a laminated composite in a single edge bend test configuration. In doing so, issues related to mesh size and their effects (or non-effects) are discussed More >

  • Open Access

    ARTICLE

    Influence of Scale Specific Features on the Progressive Damage of Woven Ceramic Matrix Composites (CMCs)

    K. C. Liu1, S. M. Arnold2

    CMC-Computers, Materials & Continua, Vol.35, No.1, pp. 35-65, 2013, DOI:10.3970/cmc.2013.035.035

    Abstract It is well known that failure of a material is a locally driven event. In the case of ceramic matrix composites (CMCs), significant variations in the microstructure of the composite exist and their significance on both deformation and life response need to be assessed. Examples of these variations include changes in the fiber tow shape, tow shifting/nesting and voids within and between tows. In the present work, the influence of many of these scale specific architectural features of woven ceramic composite are examined stochastically at both the macroscale (woven repeating unit cell (RUC)) and structural More >

Displaying 1-10 on page 1 of 13. Per Page